APPROXIMATE VARIATIONAL ESTIMATION FOR A MODEL OF NETWORK
FORMATION

ANGELO MELE AND LINGJIONG ZHU

ABSTRACT. We develop approximate estimation methods for exponential random graph models
(ERGMs), whose likelihood is proportional to an intractable normalizing constant. The usual ap-
proach approximates this constant with Monte Carlo simulations, however convergence may be
exponentially slow. We propose a deterministic method, based on a variational mean-field approx-
imation of the ERGM’s normalizing constant. We compute lower and upper bounds for the ap-
proximation error for any network size, using nonlinear large deviations results. This translates into
bounds on the distance between true likelihood and mean-field likelihood, as well as bounds on the
distance between approximate parameter estimates from the MLE, assuming the likelihood is not
very flat. In small networks, a simple Monte Carlo exercise shows that our deterministic method
provides similar estimates as the simulation-based methods with the advantage of converging in
quadratic time.

Keywords: Networks, Microeconometrics, Large networks, Variational Inference, Large devia-

tions, Mean-Field Approximations

1. INTRODUCTION

In this paper, we provide variational mean-field methods to approximate the likelihood of expo-
nential random graph models (ERGMs), a class of statistical network formation models that has
become popular in sociology, machine learning, statistics and more recently economics. While a
large part of the statistical network literature is devoted to models with unconditionally or condi-
tionally independent links (Graham, 2014; Airoldi et al., 2008; Bickel et al., 2013), ERGMs allow
for conditional and unconditional dependence among links (Snijders, 2002; Wasserman and Pat-

tison, 1996). These models have recently gained attention in economics, because several works
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have shown that ERGMs have a microeconomic foundation. In fact, the ERGM likelihood natu-
rally emerges as the stationary equilibrium of a potential game, where players engage in a myopic
best-response dynamics of link formation (Blume, 1993; Mele, 2017; Badev, 2013; Chandrasekhar,
2016; Chandrasekhar and Jackson, 2014; Boucher and Mourifie, 2017), and in a large class of evo-
lutionary games and social interactions models (Blume, 1993; Durlauf and Ioannides, 2010).

Estimation and inference for ERGMs are challenging, because the likelihood of the observed
network is proportional to an intractable normalizing constant, that cannot be computed exactly,
even in small networks. Therefore, exact Maximum Likelihood estimation (MLE) is infeasible.
The usual estimation approach, the Markov Chain Monte Carlo MLE (MCMC-MLE), consists
of simulating many networks using the model’s conditional link probabilities and approximating
the constant and the likelihood with Monte Carlo methods (Snijders, 2002; Koskinen, 2004; Chat-
terjee and Diaconis, 2013; Mele, 2017). Estimates of the MCMC-MLE converge almost surely
to the MLE if the likelihoods are well-behaved (Geyer and Thompson, 1992). However, a re-
cent literature has shown that MCMC-MLE may converge in exponential time, making estima-
tion and approximation of the likelihood impractical or infeasible for a large class of ERGMs
(Bhamidi et al., 2011; Chatterjee and Diaconis, 2013; Mele, 2017). An alternative is the Maximum
Pseudo-likelihood estimator (MPLE), that finds the parameters that maximize the product of the
conditional link probabilities of the model. While MPLE is simple and computationally fast, the
properties of the estimator are not well understood, except in some special cases and when some
regularity conditions are satisfied (Boucher and Mourifie, 2017; Besag, 1974). Several authors
have shown that MPLE may give misleading estimates when the dependence among links is strong
(Geyer and Thompson, 1992). Furthermore, since the ERGMs are exponential families, networks
with the same sufficient statistics will produce the same MLE, but may have different MPLE.

Our work departs from the standard methods of estimation, proposing deterministic approxima-
tions of the likelihood, based on the approximated solution of a variational problem. Our strategy is
to use a mean-field algorithm to approximate the normalizing constant of the ERGM, at any given
parameter value (Wainwright and Jordan, 2008; Bishop, 2006; Chatterjee and Diaconis, 2013). We

then maximize the resulting approximate log-likelihood, with respect to the parameters. To be
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concrete, our approximation consists of using the likelihood of a simpler model with independent
links to approximate the constant of the ERGM. The mean-field approximation algorithm finds the
likelihood with independent links that minimizes the Kullback-Leibler divergence from the ERGM
likelihood. Using this likelihood with independent links, we compute an approximate normalizing
constant. We then evaluate the log-likelihood of our model, where the exact normalizing constant
is replaced by its mean-field approximation.

Our main contribution is the computation of exact bounds for the approximation error of the
normalizing constant’s mean-field estimate. Our proofs use the theoretical machinery of Chat-
terjee and Dembo (2016) for non-linear large deviations in models with intractable normalizing
constants. Using this powerful tool, we provide explicit lower and upper bounds to the error of
approximation for the mean-field normalizing constant. The bounds depend on the magnitude of
the parameters of our model and the size of link externalities (Mele, 2017; Boucher and Mourifie,
2017; Chandrasekhar, 2016; dePaula, forthcoming). The result holds for dense and moderately
sparse networks. Remarkably and conveniently the mean-field error converges to zero as the net-
work becomes large. This guarantees that for large networks, the log-normalizing constant of an
ERGM is well approximated by our mean-field log-normalizing constant.

The main implication of the main result is a bound to the distance between the log-likelihood
of the ERGM and our approximate log-likelihood; these also converge in sup-norm as the network
grows large. As a consequence, we can use the approximated likelihood for inference in large
networks. Finally, we show that our mean-field parameter estimates are close to the MLE in terms
of Euclidean distance, as long as the likelihoods are well-behaved and not very flat. Because our
bounds are not sharp, in practice convergence could be faster than what is implied in these results.

While our method is guaranteed to perform well in large graphs, many applications involve
small networks. For example, the school networks data in the National Longitudinal Study of
Adoloscent Health (Add Health) (Boucher and Mourifie, 2017; Moody, 2001; Badev, 2013) or the
indian villages in Banerjee et al. (2013) include on average about 200-300 nodes. To understand
the performance of our estimator, we perform simple Monte Carlo exercises in small networks and

compare it to MCMC-MLE and MPLE. In terms of computational speed, our method performs as
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fast or faster than MCMC-MLE, because it converges in quadratic time; while MCMC-MLE may
converge in exponential time; mean-field is usually slower than MPLE. Our Monte Carlo results
show good performance for networks with 50 to 500 nodes. The median mean-field approximation
point estimates are close to the true parameters, but exhibit a small bias. Both MCMC-MLE and
MPLE show a larger variability of point estimates for the two-stars and triangle parameters. When
we increase the network size, all three estimator improve, as expected. We conclude that our
method performance is similar to available estimators in small networks.

To the best of our knowledge, this paper is one of the first works in economics to use mean-
field approximations for inference in complex models. Furthermore, we show that our application
of variational approximations has theoretical guarantees, and we can bound the error of approxi-
mation. While similar deterministic methods have been used to provide an approximation to the
normalizing constant of the ERGM model (Chatterjee and Diaconis, 2013; Amir et al., 2012; Mele,
2017; He and Zheng, 2013; Aristoff and Zhu, 2018), we are the first to characterize the variational
approximation error for a model with covariates and its computational feasibility.

Our technique can be applied to other models in economics and social sciences. For example,
models of social interactions with binary decisions like in Blume (1993), Badev (2013), Durlauf
and Ioannides (2010), models for bundles (Fox and Lazzati, 2017), and models of choices from
menus (Kosyakova et al., 2018) have similar likelihoods with intractable normalizing constants .
Therefore our method of approximation may allow estimation of these models for large sets of
bundles or menu choices.

The rest of the paper is organized as follows. Section 2 presents the theoretical model and
variational approximations. Section 3 contains the main theoretical results and the error bounds.
Section 4 presents the Monte Carlo results and Section 5 concludes. All the proofs and additional

Monte Carlo simulations are in the Appendix.
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2. NETWORK FORMATION MODEL AND VARIATIONAL METHODS

2.1. Exponential random graph models. The class of exponential random graphs is an impor-
tant generative model for networks and has been extensively used in applications in many dis-
ciplines ( Wasserman and Pattison (1996), Jackson (2008), dePaula (forthcoming), Mele (2017),
Moody (2001), Wimmer and Lewis (2010), Amir et al. (2012)). In this paper we consider a model
with nodal covariates, two-stars and triangles.

Our model assumes that the network consists of n heterogeneous nodes, indexed by 7 = 1, ..., n;
each node is characterized by a S-dimensional vector of observed attributes 7; € X := ®f:1Xj,
©=1,...,n. The sets X; can represent age, race, gender, income, etc.' Letabean xn symmetric
matrix with elements «;; := v(7;, 7;), where v : X x X — R is a symmetric function and let 5 and
~ be scalars. For ease of exposition we focus on the case in which the attributes are discrete and
finite, but our results hold when this assumption is relaxed and the number of attributes is allowed
to increase with the size of the network.

The likelihood 7, (g, o, B,7) of observing the adjacency matrix g depends on the composition
of links, the number of two-stars and the number of triangles

exp [@n(g; @, B,7)]
wEGn exp [Qn(wv a, 67 7)] ’

2.1 Tn(g; o, B,7) = 5

where the function () is called a potential function and takes the form
22 Qulg;a,B,7) =) gy + o 3D gigim + n SN gigingn
i=1 j=1 i=1 j=1 k=1 i=1 j=1 k=1
and c(a, 3,7) = Y, cq, €XP [Qn(w; a, B,7)] is a normalizing constant that guarantees that like-

lihood (2.1) is a proper distribution. The second and third term of the potential function (2.2) are

the counts of two-stars and triangles in the network, rescaled by n. We rewrite (2.1) as
(2.3) Ta(gi o, B,7) = exp {n® [To.(g; v, B,7) — (v, B, 7)1},

IFor instance, if we consider gender and income, then S = 2, and we can take ®§:1Xj = {male,female} x
{low, medium, high}. The sets X; can be both discrete and continuous. For example, if we consider gender and
income, we can also take ®§:1Xj = {male,female} x [$50,000,$200,000]. Below we restrict the covariates to be
discrete, but we allow the number of types to grow with the size of the network.
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where T, (g; o, 8,7) = Qn(g;a, 3,7)n"? is the potential scaled by n? and the log-normalizing

constant (scaled by n?) is ,

24) Un(er, B,7) = —logzexpnT(waﬁv)}

w€Gn
and G, = {w = (wij)i<ij<n @ wij = wj; € {0,1},w;; = 0,1 < 4,5 < n} is the set of all
binary matrices with n nodes. The re-scaling of the potential and the log-normalizing constant is
necessary for the asymptotic results, to avoid the explosion of the potential function as the size of

the network grows large.

2.2. Microeconomic equilibrium foundations. ERGMs caught the attention of economists be-
cause recent works proves a behavioral and equilibrium interpretation of likelihood (2.3).> In
fact, these likelihoods naturally arise as equilibrium of best-response dynamics in potential games
(Blume (1993), Monderer and Shapley (1996), Butts (2009), Mele (2011)).

To be concrete, let’s consider the following game. Players’ payoffs are a function of the compo-
sition of direct links, friends’ popularity and the number of common friends. The utility of network

g for players ¢ is given by

(2.5) Z Q5G4 + — Z Z 9iiGjk + = Z Z 9i39ik ki,

J=1 k=1 ] 1 k=1
Each player forms links with other nodes, maximizing utility (2.5), but taking into account the
strategies of other players. We can show that this game of network formation converges to an
exponential random graph in a stationary equilibrium, under the following assumptions:® (1) the
network formation is sequential, with only two active players in each period; (2) two players meet
over time with probability p;; := p(7;,7;,9-:;) > 0, where ¢g_;; indicate the network ¢ but link

gij; and these meetings are i.i.d. over time; (3) before choosing whether to form or delete a link,

Butts (2009), Mele (2017), Chandrasekhar and Jackson (2014), Boucher and Mourifie (2017), Badev (2013), dePaula
(forthcoming).

3See Mele (2017) or Badev (2013) for more technical details and variants of these assumptions. See also Chan-
drasekhar (2016), dePaula (forthcoming), Chandrasekhar and Jackson (2014), Boucher and Mourifie (2017).
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players receive an i.i.d. logistic shock (51, €;50). At time ¢, the link gfj is formed if

(gz] =1 g—z]7 ) +uj(gz] =1 g—z]? ) +€'L]1 Z ul<gz] =0 g—z]? ) + u](gzj =0 g—z]? ) + gsz'

Mele (2017) shows that such a model is a potential game (Monderer and Shapley, 1996) with
potential function given by equation (2.2). The probability of observing network ¢ in the long run
is given by (2.3) (Theorem 1 in Mele (2017)), thus (2.3) describes the stationary behavior of the
model. In the long-run we observe with high probability the pairwise stable networks, where no

pair of players want to form or delete a link.*

2.3. Variational Approximations. The constant ¢, («, [3,) in (2.4) is intractable because it is a
sum over all 2(75) possible networks with n nodes; if there are n = 10 nodes, the sum involves
computation of 2%° potential functions, which is infeasible.’

In the literature on exponential family likelihoods with intractable normalizing constant, this
problem is solved by approximating the normalizing constant using Markov Chain Monte Carlo
(Snijders, 2002; Mele, 2017; Goodreau et al., 2009; Koskinen, 2004; Caimo and Friel, 2011; Mur-
ray et al., 2006). However, Bhamidi et al. (2011) has shown that such methods may have exponen-
tially slow convergence for many ERGMs specifications.

We propose methods that avoid simulations and we find an approximate likelihood ¢, (g) that
minimizes the Kullback-Leibler divergence K L(q,|m,) between ¢, and the true likelihood 7,

L(aalmn) = D dnlw bgkﬁ%%?]

weGn

(2.6) = > (W) [log gu(w) — n*To(w; o, B,7) + n*thu(a, B,7)] =0

wegn

With some algebra we obtain a lower-bound for the constant ¥, (v, 5, 7)

U0 8.7) 2 By, [Tl B3] + —5H(0n) = L(aw).

“In the Online Appendix D we provide more details about the microeconomic foundation of the model for the interested
reader.

3See Geyer and Thompson (1992), Murray et al. (2006), Snijders (2002) for examples.
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where H(g,) = — D, cq, dn(w)log g,(w) is the entropy of distribution ¢, and E,, [T,,(w; a, 3,7)]
is the expected value of the re-scaled potential, computed according to the distribution g,,.

To find the best likelihood approximation we minimize K L(qg,|m,) with respect to ¢,,, which is
equivalent to finding the supremum of the lower-bound £L(q,,), i.e

@n ) = sup L) = sup B, [ wia 8]+ o)}

qn € Qn qn€ Qn

where Q,, is the set of all the probability distributions on G,,. We have transformed the problem of
computing an intractable sum into a variational problem, i.e. a maximization problem.
In general, problem (2.7) has no closed-form solution, thus the literature suggests to restrict Q,,

to be the set of all completely factorized distribution®
(2.8) H Iug” /’Ll] 1 gzg

where p;; = E,, (g:;) = P,,(¢9;; = 1). This approximation is called a mean-field approximation of
the discrete exponential family. Straightforward algebra shows that the entropy of ¢, is additive
1
n2 n - Z Z Mg log /jlz] Nij) log(l - fl’ij)] )
=1 j5=1
and the expected potential can be computed as

Zi Ej Oéz'j:uzj Z Z Zk Mg sk WZi Zj Zk Mg gk ok
n? :

EQn [Tn (wv a, ﬁ? ’7)} = 2TL3 6n3

The mean-field approximation leads to a lower bound of 1, («, 5,7), because we restricted Q),,,

and the simpler variational problem is to find a n x n symmetric matrix p(«, 3, y) that solves

Un(a, B,7) = U (e, B,7))

= sup { Z Quijfhij + o 5.3 Z/’L’L]/’L]k’ +-— 613 Z Mg gk ki

HG[Ovl]nQWij:Mji:WJ 5,k 1,7,k
1 n n
(2.9) ~ 9.3 ; ; (1255 10g pij + (1 — pij) log(1 — pij)] }

6See Wainwright and Jordan (2008), Bishop (2006)
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The mean-field problem is in general nonconvex and the maximization can be performed using any

global optimization method, e.g. simulated annealing or Nelder-Mead.’

3. THEORETICAL RESULTS

3.1. Convergence of the variational mean-field approximation. For finite n, the variational
mean-field approximation contains an error of approximation. In the next theorem,we provide a

lower and upper bound to the error of approximation for our model.

THEOREM 3.1. For fixed network size n, the approximation error of the variational mean-field

problem is bounded as

a0 SOy By) - 6 (e, B)) < Crla B7) (

n

1ogn>1/5+ Cola, B,7)

n-1/2

where Cy(a, 3,7), Co(a, B,7) are constants depending on «, 3 and v and C3(3,7) is a constant

depending only on 3,~:
CulaB7) = ex - (maxlag] +181' + 1l +1)

1/2
ol $7) = o (g 181+ Pl +1) (L[5 + B2

C3(8,7) = |8l + 1,

where cq, co > 0 are some universal constants.

The constants in Theorem 3.1 are functions of the parameters «, $ and . The upper bound
depends on the maximum payoff from direct links and the intensity of payoff from indirect con-
nections. The lower bound only depends on the strength of indirect connections payoffs (popularity
and common friends, that is 5 and 7). One consequence is that our result holds when the network
is dense, but also when it is moderately sparse, as explained in the next remark.

The estimated approximation error bounds in Theorem 3.1 allow for moderate sparsity in our

model, in the sense that |a;;|, || and || can have moderate growth in n instead of being bounded,

See Wainwright and Jordan (2008) and Bishop (2006) for more details.
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and the difference of v, and ¥ goes to zero if C}(a, 3,7) grows slower than n'/?/(logn)*/®
and Cy(a, 3,7) grows slower than n'/2 as n — oc. For example, if max; ;|a;| = O(n%),
18] = O(n), || = O(n’) where 6; < £ and 05, 03 < 55, then 1, — 2'F goes to zero as n — oo.
On the other hand, if the graph is too sparse, e.g. |5| = Q(n), |y| = Q(n), then ¢, cannot be
approximated by ¥,

Our main Theorem 3.1 implies that we can approximate the log-likelihood of the ERGM using

the mean-field approximated constant.

PROPOSITION 3.1. Let 0,,(g,, o, 3,7) be the log-likelihood of the ERGM

UG, @, B,7) == n"210g (Tn(gn, @, B, 7)) = Tulgn, @, B,7) — nle, B,7),

and (¥ (g,,, a, 8,7) be the “mean-field log-likelihood” obtained by approximating 1, with YMF :

(g, 0, 8,7) = Tolgn, o, B,7) — VM (a, B,7).

Then for any compact parameter space ©,

(32) 0< sup [K%F—En} < sup Ci(a,B,v)n Y (logn)/> + sup Cy(a, B,7)n" V2.
a,B,7€0 a,B,7€0 a,B,7€0

Proposition 3.1 shows that as the network size grows large, the mean-field approximation of
the log-likelihood ¢**" is arbitrarily close to the ERGM log-likelihood /,,. This approximation is
similar in spirit to the MCMC-MLE method, where the log-normalizing constant is approximated
via MCMC to obtain an approximated log-likelihood (Geyer and Thompson, 1992; Snijders, 2002;
dePaula, forthcoming; Moller and Waagepetersen, 2004). The main difference is that our approxi-
mation is deterministic and does not require any simulation.

We use the bounds on the likelihoods to also derive a bound on the distance between the MLE
and our mean-field estimator, when the MLE exists and it is well-behaved. Because our bounds are
not sharp, this proves to be quite hard. We therefore, consider a local version of this convergence.

We know that the ERGM likelihood is concave in parameters because it is an exponential family.
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We also know that the mean-field log-constant is convex in parameters®, therefore the approximate
log-likelihood is also concave. However, to get a bound on the distance between estimates we need
well-behaved objective functions, with enough curvature at least close to their maximizers. If the
objective functions is too flat, the distance between the estimator may be too large in terms of our
upper bounds.” Therefore we assume that the likelihood and its mean-field approximation have

enough curvature.

PROPOSITION 3.2. Assume («, 3,7) lives on a compact set ©. Let én = (G, Bn,%) and
é,f}fF = (aMF Bé\m AMEY be the maximizers of £, and (*F, respectively, in the interior of ©.
Also assume that 1, and VMY are differentiable and ji,,- and p*¥ -strongly convex in (a, 3,7),

respectively, on ©, where ji,, > 0 and pM* > 0. Then

~ N 2 1 logn % 1 1
(3.3) ||6,—0MF| < sup Cf(a,ﬁ,’y)( & ) + sup C(a,fB,y)n 4|,

VYN
(b + p3 )2 |aBreo n o,8,7€6

where Cy and Cy are defined in Theorem 3.1 and || - || denotes the Euclidean norm.

In Proposition 3.2, if y,, and p ¥ goes to zero sufficiently fast as n goes zero, then the bound
in (3.3) may not go to zero as n goes to zero. If for example y,,, u*" are uniformly bounded from
below, and both sup,, 5 ce C1(c, 3,7) and sup, 5.co Ca(a, 5,7) are O(1), then ||, — OMF|| =
O(n=1%(1og n)"/10).

4. ESTIMATION EXPERIMENTS IN FINITE NETWORKS

To understand the performance of the variational approximation in smaller networks, we perform
some Monte Carlo experiments. We compare the mean-field approximation with the standard
simulation-based MCMC-MLE (Geyer and Thompson (1992), Snijders (2002)) and the MPLE
(Besag (1974)). Our method converges in n? steps, while the MCMC-MLE may converge in e’
steps. The MPLE usually converges faster.

S@Z)ﬁ[ Fis convex in (c, 3,7) by its definition in (2.9) since the expression inside the supremum in (2.9) is affine in
(a, 8,7) and supremum over any affine function is convex.
Geyer and Thompson (1992) mentions similar problems arise for the MCMC-MLE. Indeed, as mentioned above, the

MLE may not exist. For example, if the number of triangles is zero in the data, it will be impossible to estimate v and
the MCMC-MLE may give an approximation with solution that tends to infinity.
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4.1. Approximation algorithm for the normalizing constant. We implemented our variational
approximation for few models in the R package mfergm, available in Github.'” We follow the
statistical machine learning literature and use an iterative algorithm that is guaranteed to converge
to a local maximum of the mean-field problem (Wainwright and Jordan, 2008; Bishop, 2006). The
algorithm is derived from first-order conditions of the variational mean-field problem.

Let p* be the matrix that solves the variational problem (2.9). If we take the derivative with

respect to j1;; and equate to zero, we get

n

-1
—2aij — ﬁn_l Z (,ujk + ,Ukl Z Mjk/'tkl] }

k=1

@n o= {1 + exp

The logit equation in (4.1) characterizes a system of equations, whose fixed point is a solution of
the mean-field problem. We can therefore start from a matrix g and iterate the updates in (4.1)

until we reach a fixed point, as described in the following algorithm.

ALGORITHM 1. Approximation of log-normalizing constant Fix parameters a, 3,y and a rel-
atively small tolerance value €,y Initialize the n x n matrix % as u “u 0, 1], forall i, j. Fix
the maximum number of iterations as I'. Then for eacht =0, ..., T

Step 1. Update the entries of matrix p® foralli,j = 1, .

n

-1
—2&ij—ﬂn’12(u§;§+um> v~ Zujku ]} :

4.2) pi = {1 + exp
k=1

Step 2. Compute the value of the variational mean-field log-constant wf FO 45

®) ®)
¢MF(t) _ > Z w/%g Z Z Dok Hij 'u]k Z Z >k Nzg N;kﬂm

2n3 6m3

2n2 Z Z |:'u” lOg ’uZ] ( luz] )log( ,US)) .

=1 j=1

MF(t*—1)
n

Step 3. Stop at t* < T if: wéwF ! < €401. Otherwise go back to Step 1.

The algorithm is initialized at a random uniform matrix ©(®) and iteratively applies the update
(4.1) to each entry of the matrix, until the increase in the objective function is less than a tolerance

10gee https://github.com/meleangelo/mfergm, with instructions for installation and few examples.
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level . Since the problem is concave in each f;;, this iterative method is guaranteed to find a local
maximum of (2.9).!" In our simulations we use a tolerance level of ¢,,; = 0.0001. To improve
convergence we can re-start the algorithm from different random matrices, as usually done with
local optimizers.'” This step is easily parallelizable, thus preserving the order n? convergence;

while the standard MCMC-MLE is an intrinsically sequential algorithm and cannot be parallelized.

4.2. Monte Carlo design. All the computations in this section are performed on a 2017 iMac with
4.2 GHz Intel Core 17 (8 processors) and 32GB RAM. We test our approximation using simulated
networks, generated using a 10 million run of the Metropolis-Hastings sampler implemented in the
ergm package in R. Each node i has a binary attribute x;, i.e. x; “ Bernoulli(0.5). Let z;; = 1

if z; = x; and z;; = 0 otherwise.

4.3) t.(g9) = — Z Z Gijzij; t—x(g) = Z Z gi; (1 — z5),

i=1 j=1 i=1 j=1

n n n

Il 1
te(g) =D D 0 ta(9) : ngzZZgwggk, t(9) =~ D > D udikgi

i=1 j=1 i=1 j=1 k=1 i=1 j=1 k=1

where t.(g), ts(g) and t;(g) are the fraction of links, two-stars and triangles respectively. And
t.(g) and t_,(g) are the fractions of links of the same type and different type, respectively. The
log-likelihood of the model ¢, (g; o, B, 7) is

4.4)  la(g, 750, B,7) = aut.(g) + aat_.(g) + (B/2)ts(g) + (7/6)te(9) — Yn(an, a2, B,7).

For computational convenience we rewrite model (4.4) in a slightly different but equivalent way

4.5)  Llul(g,7;&,B,7) = ante(g) + aat.(g) + (B/2)ts(g9) + (7/6)t:(9) — ¥n(cu, g, B,7),

There are other alternatives to the random uniform matrix. Indeed a simple starting value could be the set of
conditional probabilities of the model at parameters «, 3, 7. We did not experiment with this alternative method.

2In the Monte Carlo exercises we have experimented with different numbers of re-starts of the iterative algorithm.
However, it is not clear what would be the optimal number of re-starts. A fixed number of restarts could be suboptimal.
It seems reasonable to increase this number as the network grows larger.
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where we have defined a; := a9 and as := a3 — as. This specification is usually found in
applications.'” In the rest of this section we setup the simulations and provide results for the
specification in (4.5).

We generate the artificial networks as follows. We generate i.i.d. attributes x; ~ Bernoulli(0.5),
initialize a network with n nodes as an Erdos-Renyi graph with probability p = e® /(1 + %), and
then run the Metropolis-Hastings network sampler using the simulate.ergmcommand to sam-
ple 100 networks, each separated by 10000 iterations, and after a burn-in of 10 million iterations."*

The MCMC-MLE estimator is solved using the Stochastic approximation method of Snijders
(2002), where each simulations has a burnin of 100,000 iterations of the Metropolis-Hastings
sampler and networks are sampled every 1000 iterations. The other convergence parameters are
kept at default of the e rgm package. The MPLE estimate is obtained using the default parameters
in ergm. To be sure that our results do not depend on the initialization of the parameters, we start
each estimator at the true parameter value. This clearly decreases the computational time required

for convergence. All the code is available in Github for replication.

4.3. Results. The first model has true parameter vector (&, &s, 5,7) = (—2,1,—1,—1) and the
summaries of point estimates are reported in Table 4.1. We show results for n = 50, 100, 200 and
500; reporting median, Sth and 95th percentile point estimates for each parameter.

The median estimates of the mean-field approximation are quite stable and exhibit a small bias,
which is well known in the literature (Wainwright and Jordan, 2008; Bishop, 2006). The median
results for MCMC-MLE and MPLE are quite precise for a; and as, but vary a lot for 3 and +.
Nonetheless the median point estimates of S and ~ are slowly converging to the true parameter
vector as n increases.'” So while it is hard to claim that the mean-field approximation outperforms

the other estimators, it seems to provide estimates in line with MPLE and MCMC-MLE.

3There are other small differences in how we have specified the model and how we have setup computations using the
statnet package in R, that can affect the comparability of the simulation results, in particular the normalizations of
the sufficient statistics. This is handled by our mfergm package, to guarantee comparability of the estimates obtained
with MCMC-MLE, MPLE and Mean-field approximate inference.

14The code is available in the Github package mfergm, and the function is simulate.model#, where # stands
for the model number: 2 is the model with v = 0, 3 is the model with 8 = 0, and 4 is the model with 5 # 0 and
7 #0.

15Some of the bias in the mean-field approximation may be due to the fact that we only initialize p once in these
simulations.
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TABLE 4.1. Monte Carlo estimates, comparison of three methods. True parameter
vector is (G, G, B,7) = (—2,1,—1,—1)

n = 50 MCMC-MLE MEAN-FIELD MPLE

aq Qo B 0 aq Qo B v aq Qo B Y
median -1.975 1.054 -1.805 -9.302 -2.016 0995 -1.000 -1.001 -1.930 1.025 -2.847 -7.433
0.05 -2.611 0.598 -9.666 -75.431 -3.879 0914 -1.269 -1.146 -2.548 0.763 -11.691 -45.896
0.95 -1.489 1.397 7.348 58.765 -1.926 4276 -0.840 -0901 -1.411 1.303 4.587 30478
n = 100 MCMC-MLE MEAN-FIELD MPLE

aq Qo B 0 aq o B v aq Qo B Y
median -2.035 1.012 -0.765 -2.199 -2.021 0988 -0.998 -1.001 -2.011 0.998 -0.926 -3.215
0.05 2312 0.730 -4937 -52.429 -2.080 0945 -1.031 -1.031 -2.258 0.835 -6.051 -36.920
0.95 -1.662 1.218 3.555 32974 -1978 1.139 -0.950 -0.939 -1.661 1.150 2.513 18.628
n = 200 MCMC-MLE MEAN-FIELD MPLE

aq Qo B 0 aq o B Y aq Qg B Y
median -1.980 1.004 -1.734 -4.100 -2.029 0988 -0.996 -0.999 -1959 1.001 -1.897 -1.027
0.05 2212 0.876 -4.710 -27.070 -2.060 0968 -1.002 -1.010 -2.156 0.920 -5.724 -18.304
0.95 -1.779 1.112 2792 31.735 -2.005 1.028 -0.969 -0987 -1.757 1.078 1.340 20.250
n = 500 MCMC-MLE MEAN-FIELD MPLE

aq Qo B Y aq o B Y ay ot B Y
median -2.016 0.998 -0.858 -2.831 -2.047 1.008 -0.947 -0.999 -2.022 1.001 -0.811 -1.398
0.05 -2.154 0946 -3986 -18.120 -2.105 0981 -0.998 -1.074 -2.115 0.965 -3.815 -12.214
0.95 -1.813 1.057 1.392 20.361 -2.004 1.109 -0.442 -0964 -1.823 1.034 0.884 10.066

Results of 100 Monte Carlo estimates using the three methods. MCMC-MLE stands for the
Monte Carlo Maximum Likelihood estimator of Geyer and Thompson (1992), implemented in the
package ergm in R, using the stochastic approximation algorithm developed in Snijders (2002).
MEAN-FIELD is our method, implemented with an iterative algorithm. MPLE is the Maximum
Pseudo-Likelihood Estimate, which assumes independence of the conditional choice
probabilities. Each network dataset is generated with a 10 million run of the Metropolis-Hastings
sampler of the ergm command in R, sampling every 10000 iterations.

The second set of results is for a model with parameters (a4, ao, 8,7) = (—=2,1,—2,3), see
Table 4.2. The pattern is similar to Table 4.1. Indeed our mean-field estimator seems to work
relatively well in most cases, especially for the estimates of /3 and +.'® We note that both MPLE
and MCMC-MLE converge to more precise estimates as n increase, which is what one would
expect. For parameters ¢, aio our mean-field estimator (median) bias persists as n increases.

While these results are encouraging, in Appendix we report some example of nonconvergence

of the mean-field algorithm.

16We have ran some additional experiments in which we increased the size of the network up to n = 2000 and found
that the MPLE estimator performs well at that network size. Since the MCMC-MLE is started at the MPLE estimate,
it is also well performing, but much slower in terms of speed.
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TABLE 4.2. Monte Carlo estimates, comparison of three methods.
vector is (@, as, B,7) = (—2,1,—2,3)

ANGELO MELE AND LINGJIONG ZHU

True parameter

n = 50 MCMC-MLE MEAN-FIELD MPLE

aq %) ,B 02 B Qg /8 g
median -2.033 0.972 -2.239 0.990 -2.000 0987 -2.793 -2.325
0.05 -2.643 0.614 -10.317 0.856 -2.652 0.784 -12.485 -55.067
0.95 -1.424 1.399 6.763 1.351 -1.875 1.379 4.807 39.883
n = 100 MCMC-MLE MEAN-FIELD MPLE

a a9 5 (g B Qi B Y
median -1.975 0.983 -2.364 0.970 -2.000 0.989 -2.944 2.981
0.05 -2.307 0.779 -7.526 0.908 -2.044 0.863 -8.598 -22.868
0.95 -1.689 1.232 2959 1.048 -1.939 1.166 0.836 28.756
n = 200 MCMC-MLE MEAN-FIELD MPLE

a 9 5 (g B Qi B Y
median -2.019 1.004 -1.869 0.976 -1.997 1.004 -2.339 5.054
0.05 -2.267 0.890 -6.331 0.948 -2.020 0933 -6.976 -21.621
0.95 -1.738 1.116 2.277 1.071 -1.953 1.082 1.239 23.073
n = 500 MCMC-MLE MEAN-FIELD MPLE

aq 9 B g B Qg B Y
median -2.012 0.998 -1.799 0.994 -1.977 1.000 -1.796 1.069
0.05 -2.150 0.939 -3.869 0.967 -2.000 0962 -4.105 -11.200
0.95 -1.884 1.057 0.728 1.056 -1.893 1.035 0.352 13.874

Notes: see notes for Table 4.1.

4.4. Computational speed. The computational speed of the three estimators is similar for small

networks. For n = 100, the mean-field approximation takes about 3.5s to estimate the model, while

an MCMC-MLE with a burnin of 100, 000 and sampling every 1000 iterations takes approximately

5.5s and the MPLE takes about 1.7s. For n = 50 the estimates take 1.6s for mean-field, 4s for

MCMC-MLE and 1.2s for MPLE.

5. CONCLUSIONS AND FUTURE WORK

We have shown that for a large class of exponential random graph models (ERGM), we can

approximate the normalizing constant of the likelihood using a mean-field variational approxima-

tion algorithm (Wainwright and Jordan, 2008; Bishop, 2006; Chatterjee and Diaconis, 2013; Mele,

2017). Our theoretical results use nonlinear large deviations methods (Chatterjee and Dembo,

2016) to bound the error of approximation, showing that it converges to zero as the network grows.
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Our estimation method consists of replacing the log-normalizing constant in the log-likelihood
of the ERGM with the value approximated by the mean-field algorithm; we then find the param-
eters that maximize such approximate log-likelihood. Since our approximated constant converges
to the true constant in large networks, the approximate log-likelihood converges to the correct log-
likelihood as the network becomes large and if the likelihoods are well-behaved and not too flat
around the maximizers, we can also show that our estimate converges to MLE.

Using an iterative procedure to find the approximate mean-field constant, we compare our
method to MCMC-MLE and MPLE (Snijders, 2002; Boucher, 2015; Besag, 1974; dePaula, forth-
coming) in a simple Monte Carlo study for small networks. The mean-field approximation exhibits
some bias, but the median estimates are similar to MCMC-MLE and MPLE. Our method converges
in quadratic time, while MCMC-MLE could be exponentially slow.

While these results are encouraging, there are several open problems and possible research di-
rections. First, it is not clear that the mean-field estimates are consistent. Our small Monte Carlo
seem to indicate that there is a persistent bias term, but there is no general proof in this setting
along the lines of Bickel et al. (2013) for stochastic blockmodels. Second, it is not clear that the
ERGM model is identified for all parameter values. Indeed some results in this literature suggest
otherwise (Chatterjee and Diaconis, 2013; Mele, 2017; Boucher and Mourifie, 2017). A promis-
ing research avenue for the future is the use of the large n mean-field approximation to understand
identification, similarly to what has been done with graph limits in Chatterjee and Diaconis (2013).
Third, while the mean-field approximation is simple and we are able to compute the approxima-
tion errors, our lower and upper bounds are not sharp. This raises the question of whether there is
another factorization (like in structured mean-field) that leads to better approximations and faster
convergence. We hope that our work will stimulate additional research and more applications of

this class of approximations.
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APPENDIX

A.1. Proof of Theorem 3.1. In this proof we will try to follow closely the notation in Chatterjee
and Dembo (2016). Suppose that f : [0, 1]Y — R is twice continuously differentiable in (0, 1),
so that f and all its first and second order derivatives extend continuously to the boundary. Let || f||

denote the supremum norm of f : [0, 1]Y — R. For each i and j, denote

o af o o0 f
and let
(A.2) a:= | f], bi:=Ifill, = Ifil-

Given € > 0, D(e) is the finite subset of RY so that for any z € {0,1}", there exists d =

(dy,...,dn) € D(e) such that

N
(A.3) S (filw) — di)? < Né2.

i=1

Let us define
(A.4) Fi=log » €@,
ze{0,1}N
and for any z = (z1,...,zy) € [0, 1]V,
N

(A.5) I(x) =) [zilogz; + (1 — ;) log(1 — ;)].

i=1
In the proof we rely on Theorem 1.5 in Chatterjee and Dembo (2016) that we reproduce in

Theorem A.1 to help the reader:

THEOREM A.1 (Chatterjee and Dembo (2016)). For any € > 0,

(A.6) sup {f(x)—](x)}—%Zc“gFg sup {f(z) —I(x)} + & + &,

z€[0,1]V i—1 z€[0,1]N



APPROXIMATE VARIATIONAL ESTIMATION FOR A MODEL OF NETWORK FORMATION 23

where
. N 1/2
o 2
(A7) &= (NZ?b) € +3Ne +log|D(e),
and
. N 2 1\ 2 1/2
(A8) 82 =4 (Zizl(acii + bl) + 1 Zi’jzl(acl-j + bibjcij + 4blcw))

1/2 1/2
+i (Zz]il bz2> <Zf\i1 Ci) +3 Zfil cii +log 2.

We will use the Theorem A.1 to derive the lower and upper bound of the mean-field approxima-
tion problem. Our results extend Theorem 1.7. in Chatterjee and Dembo (2016) from the ERGM
with two-stars and triangles to the model that allows nodal covariates. Notice that in our case the

N of the theorem is the number of links, i.e. N = (g) Let

(A9) Ly = E 6219,%" QiTij g Do1<i g k<n TiiTikT G 221<i,j,k<n xzaxakx’“a

Tij E{O,l},l‘i]':a:ji,lgi<j§n

be the normalizing factor and also define

1 s Y
(AlO) Ln = sup {— O‘ijl‘ij + — xijxjk + — xijwjkxki
:):ijG[U,l],xijzxj¢,1§i<j§n n2 227]: 2n3 %; 6n3 %;
1
1<i<j<n

Notice that n=2Z,, = ¢, and L,, = ypMF",
For our model, the function f : [0, 1] (3) - R is defined as

n n n

(A1) Fla) =D ayry + % SN Yt >0 Y wa.

i=1 j=1 i=1 j=1 k=1 i=1 j=1 k=1
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Then, we can compute that,

(A.12) a= £ <D lawl+ 51Bn* + < lyin®

i=1 j=1
, 1 1
<n” |max |a;;| + 5\6I + gh! :
Z?]

Let k € N, and H be a finite simple graph on the vertex set [k] := {1,...,k}. Let E be the set
of edges of H and |E| be its cardinality. For a function 7" : [0, 1] () 5 R

E, H Lqeqr s

q€[n]* {LL'}EE

1
(A.13) T(z) = —

Chatterjee and Dembo (2016) (Lemma 5.1.) showed that, for any ¢ < j, i’ < j/,

(A1) |2Z ] <21
and
(A.15) o°T AB|(|Bl = )nt if [{i,5,7,j'} = 2 or 3,

AIE|(IE] = On=2 if [{i, 5,7, 5} = 4.
Therefore, by (A.14), we can compute that

af

(91:1-]-

Z!]

By (A.15), we can also compute that

0*f
(A.17) Clig)(i'j') = ‘

&cij&n@-/j/

(

4318122 = 1) + g3 = 1)) n~t if [{i, 5,4, jH =2 0r 3,

IN

4318122 = 1) + g3 =) 2 if [{i, 5,7, 5} = 4,
\
(

4(18l+ W) n~t i [{i, 5,7, 5"} = 20 3,

A(B1+ e~ i i, g, 5 = 4
\
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Next, we compute that

n n n n n n

of B g
(A.18) aTZJ = 20y 8x] o Z Z:cwxjk + — on ; . ;$ij$jkxki

i=1 j=1 k=1 =1 j=1 k=

Let 7} and 15 be defined as

n n n

3
3
3

1 1
(A19) Tl(flj) = E Z : Zmijmjk, 2 = ﬁ xijxjkxki.
1=1 j=1 k=1 1=1 j=1 k=1
Then, we have
af BoT, v 0T,
A.20 = 20, + = s )
( ) 8:617 g + 2 ai[}” 6 &”Eij

Chatterjee and Dembo (2016) (Lemma 5.2.) showed that for the 77 and 75, defined above, there
exist a set Dy (€) and Dy(e) satisfying the criterion (A.3) (with f = T} and f = T3) so that

1243 (52131 C16'n . Cy6*
(A.21) 1Dy ()| < exp{ ! o log = } = exp{ 164 log 624 }

€

X adad N adq4 8n 8
A Do) < exp {01343 Mo 0234 3 } - {013 o 0243 } |
€ 6

€ €

where C~‘1 and C’g are universal constants.
Let us define

(A.23)
I} ¥ 2 € 6 € o
Dle) =120+ 2di+ 2dydy €Dy (2 -2 ) dpeDy (2--C) 1<i<j<nb.
(6) {Oéj+21+62 1€ 5 \/5 9 € Doy 5 \/§ 1<) n

Hence, D(¢) satisfies the criterion (A.3) and

(A.24) |D(e)| < %n(n +1) ’Dl (ﬂe/ﬁ)‘ : ’DQ (3\/56/7)’

1 C16%8% . Cy61p* Ci33y4n . (3844
Sén(n—kl)exp{ 1 log 1 eXP {1 log4‘3464 )
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Therefore, by recalling £, from (A.7), we get

/2
(A25) & = (( ) Z bw)) €+3(g>e+log|D(e)]
1<i<j<n

1
4

. n
L_l (2 max [a;;| + 2|8] + 2|7|> } (2).S

1 Ci648%n  Co6'B*  Ci3%*n . (Ch3%y!
+10g(—n(n+1))+ 1 log 1o + 1 log 1

< Ci(a, B, 7)n’e + Cl(a’fwn log
€

- Cl (Oé, /87 7)”9/5(10g n)1/57

Cl(aa ﬁa 7)

el

by choosing € = (10%)1/5, where C («, 3, 7) is a constant depending only on «, 3, y:

(A.26) Ci(a, B,7) =a <nga;x g + 181" + I [* + 1) :

where ¢; > 0 is some universal constant. To see why we can choose C(«v, 3,7) as in (A.26) so that
(A.25) holds, we first notice that it follows from (A.25) that we can choose C'(«, [3,7) such that
Ci(a, B,7) > max{¢; max;; |a;;| + Ca| 8] + C3|7| + ¢4, &58%, Cey*}, where ¢y, Co, €3, C4, 5, C6 > 0
are some universal constants. Note that max{¢; max;; |ay;| + Ca|B| + Gly| + ¢4, 8%, é67*} <
¢1max;; o] + G| 8] + Glyl + s + &6 + eyt < o (max;; |ay;| + |8+ |y|* + 1) for some
universal constant ¢; > 0. Thus, we can take C (a, 3, ) as in (A.26).

We can also compute from (A.8) that

& = 4( Z (CLC(Z])(Z] +b ”))

1<i<j<n

1/2
2
+ > (actiyiriry + bapbiriCans + 4bg)e mw)))

1<i<j<n,1<i/<j'<n

1/2 1/2
1 ) )
+Z< Z bw)) < Z C(ij)(ij)) +3 Z C(ij)(ij) T log 2,

1<i<j<n 1<i<j<n 1<i<j<n

A~ =
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n 1 1 ?
e<of(}) <n (maxlowl + 5191+ §h1) 4081 + 1) + (2] + 2181+ 201 )

1 1
n’ [max |ovij| + §|5| + 6\7\]
2y

- [(Z) ("5 7) sl + et + ((Z) -(5) ("3 2)) (18] + Ivl)Qn‘Ql

1 1
- (2max oy + 2051+ 201 ) - (x| + 5151 + 6|7|>

| [(Z) ("3 )01+ b+ <©— )4 81+ ] 1

1
+ 3 (5) maxlasl+ 28]+ 20081 + o -1+3<2) (181 + n~ + log:2
8

< C2< ) 3/2

where we used the formulas for a, b(;;), and c(;;) ;1) that we derived earlier and the combinatorics

identities:

> o = )

1<i<j<n,1<4/ <5/ <n, |{3,5,¢',5" }|=4 1<i<i<n 1</ <5/ <n, [{i,5,4" ,5' }|=4
2
= - 9
2 2 2
1<i<j<n,1<i!<j5'<n,|{i,j,i’,j' }|=2 or 3

and Cy (v, 3,7) is a constant depending only on «, 3,y that can be chosen as:

1/2
A2 G i) i= e (maxlagl + 81+ 1+ 1) (14 B

where ¢ > 0 is some universal constant.

Finally, to get lower bound, notice that

1 1
(A.28) 5 Z Cij) (i) < 5(2)4(‘5‘ +y)n~t < C3(B8,7)n,

1<i<j<n

where C3(3, ) is a constant depending only on 3, and we can simply take C3(3,7) = |B] + |7]-
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A.2. Proof of Proposition 3.1. We can approximate v,, by 2" as seen in Theorem 3.1, and as

a result, we can approximate the log-likelihood as follows.

(a9, ,7) 1=~ 0g(m (g, 5,7)) = Tulg, 0, 5,7) — Yular 5,7),

by the mean-field log-likelihood:

gﬁ/lF(g#)QﬁafY) = Tn<g7a7577) - w%F(a7ﬁ77>7

Then the difference between the mean-field likelihood and the ERGM likelihood is bounded uni-

formly over g € G, for any «, 3, 7:

0 <0 (g,0,8,7) = lu(g, @, B,7) < Cile, B,v)n " (logn)/® + Cy(a, B,y)n 2.

Therefore, for any compact ©, we have

0< sup [E%F(g,a,ﬂ,’y) - gn(gaa7ﬁ77)]
a,B,y€O

< up [Ci(a, B,7)n 5 (log n)? + Cy(a, B,7)n 2]
a,B,ve

< sup 01(%577)”_1/5(10%”)1/5+ sup 02(047577)”_1/2~
a,B,7€0 a,B,7€O

This proves the result.

A.3. Proof of Proposition 3.2. Note that since 1, (resp. M) is differentiable and p,,-strongly

convex in 0 := («, 3,7) € © and
gn:Tn_wm K%F:Tn_win7

and T, is linear in § = (o, 3,7), we have that ¢, (resp. ¢*F) is differentiable and p,,-strongly

concave in 6 := (a, #,7) € O so that for any x,y € O,

(A.29) baly) < bale) + V(@) (y = 2) = Zlly - I,
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and in particular,

(A30) Ga(0)7) < 0a(B) + V0 (6)7 (02" = 0,) = EX10NT 6,

A~ ,Un A A
= En(en) - ?HH%F - QN||27

and similarly, for any x,y € ©,
(A3D) 07 (y) < 61 (@) + VT (@) (y — 2) = lly — .
and in particular,

MF
(A3D) (D) < GIEONT) + VOGNV (6, — 61 — P 6, — 02|

MF
r@yry — En g, — grr.

Adding the inequalities (A.30) and (A.32), we get

2

én_éMF2<—
0 =3I <

(@) = ,0)) + (£a(B) = €17 600 ) |

eyt

By applying Theorem 3.1, we get

1
- - 2 1 1 12
16, — 27| < YT { sup Ci(a, B,7)n"5(logn)s + sup Cy(a, B,7)n 2}
(pn + pME)2 |apreo ,8,7€0
2 1 1 1 1 1
= W sup Cl (Oéaﬁaﬂy)n 10 (lOg n) 10 + sSup CZ (a,ﬁ,’y)n HE
(pn + pdF)2 Lapreo ,B,7€0

where the last step is due to the inequality \/z +y < \/x + ,/y for any z,y > 0. The proof is

complete.

APPENDIX B. ADDITIONAL SIMULATION RESULTS

B.1. No covariates, edges and two-stars model. We have estimated a model with no covariates.
This corresponds to a model in which &y = 0 or v = a9 = «. The results of our simulations for

small networks are in Table B.1. Our method performs relatively well in this simpler case. Indeed
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in this case there are results that would allow us to solve the variational problem in closed form
for large n (Chatterjee and Diaconis, 2013; Mele, 2017; Aristoff and Zhu, 2018; Radin and Yin,

2013). The MPLE and MCMC-MLE median estimate seems to converge to the true value as we

increase n, but our approximation seems to perform slightly better here.

TABLE B.1. Monte Carlo estimates, comparison of three methods. True parameter
vector is (&g, do, 5) = (—2,0,1)

n = 50 MCMC-MLE MEAN-FIELD MPLE

831 Qo g 3! Qo g 3! Qo g
median -2.063 0.016 -0.324 -2.021 0.007 0.999 -1.983 0.018 -1.006
0.05 -2.692 -0.614 -23.828 -2.412 -0.372 0975 -2.439 -0.368 -34.177
0.95 -1.363 0.657 22.738 -1.783 0.413 1.015 -1.449 0.401 14.465
n = 100 MCMC-MLE MEAN-FIELD MPLE

831 Qo p 3! Qo g 83! Qo 8
median -1.970 -0.042 0.221 -1.981 -0.017 1.000 -1.949 -0.023 -1.231
0.05 -2.241 -0333 -13.226 -2.101 -0.194 0.993 -2.168 -0.196 -14.402
0.95 -1.602 0.249 16.316 -1.874 0.134 1.012 -1.643 0.142 9.328
n = 200 MCMC-MLE MEAN-FIELD MPLE

831 Qo s 3! Qo p 3! Qo B
median -2.012 -0.005 1.483 -1.998 0.002 1.000 -2.003 -0.001 1.225
0.05 -2.214 -0.184 -9.515 -2.067 -0.093 0.997 -2.160 -0.095 -9.682
0.95 -1.796 0.161 12.179 -1.935 0.091 1.003 -1.790 0.095 8.784

Notes. See notes for Table 4.1.

B.2. Model with 2-stars. In this subsection we report estimates of a model where the triangle
term is excluded from the specification ( v = 0 in log-likelihood (4.5)). In Table B.2 we report
results for 100 simulations of a model with (&y, &z, 5) = (—2,1,2). We run simulations for
networks of size n = 50, 100, 200, to show how our method compares to MCMC-MLE and MPLE
when the size of the network grows. In general, we expect more precise results as n grows large.
The results are encouraging and the mean-field approximation seems to behave as expected.
Indeed, the median estimate is very close to the true parameters that generate the data. As the size
of the network grows from n = 50 to n = 200, both MCMC-MLE and MPLE also improve in
precision. The fastest method in terms of computational time is the MPLE. This is because the
MPLE’s speed depends on the number of parameters. Our mean-field approximation is as fast as

the MCMC-MLE.
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TABLE B.2. Monte Carlo estimates, comparison of three methods. True parameter
vector is (G, ag, B) = (—2,1,2)

n = 50 MCMC-MLE MEAN-FIELD MPLE

ay iy B a% o 5 a% iy 5
median -2.015 0.999 2303 -1.993 1.000 2.004 -1.996 0.998 1.820
0.05 2433 0.641 -1.085 -2.060 0.885 1916 -2.325 0.780 -2.556
0.95 -1.666 1.337 6.118 -1.905 1.090 2.087 -1.573 1.273 4.783
n = 100 MCMC-MLE MEAN-FIELD MPLE

0y Qi 5 a%) Qi 5 a% a% f
median -1.995 1.012 1932 -1980 1.011 2.011 -1.980 1.010 1.783
0.05 -2.189 0.861 0.701 -2.032 0969 1.992 -2.175 0.901 0.329
0.95 -1.833 1.157 3.314 -1944 1.044 2.088 -1.816 1.141 2.867
n = 200 MCMC-MLE MEAN-FIELD MPLE

a% Qg B a%) Qi 5 a% a%) B
median -2.000 1.009 1938 -1.986 1.005 2.016 -1.997 1.007 1.930
0.05 -2.182 0925 0.843 -2.004 0.932 1999 -2.176 0.950 0.592
0.95 -1.882 1.087 4.119 -1.935 1.028 2.214 -1.847 1.069 3.541

Notes. See notes for Table 4.1.

The second set of Monte Carlo experiments is reported in Table B.3, where the data are generated

by parameter vector (G, o, 3) = (—2,1,3). The pattern is similar to the previous table, but the

mean field estimates exhibit a little more bias.

TABLE B.3. Monte Carlo estimates, comparison of three methods. True parameter
vector is (&g, as, 5) = (=2, 1,3)

n = 50 MCMC-MLE MEAN-FIELD MPLE

a Qo g 3! Qo s 3! Qp s
median -1.978 1.010 2.742 -1.958 1.026 3.025 -1.921 1.016 2.357
0.05 -2.308 0.745 1.342 -2.045 0.878 2.938 -2.201 0.823 -0.742
0.95 -1.689 1.229 4.466 -1.811 1.141 3.468 -1.547 1.202 4.288
n = 100 MCMC-MLE MEAN-FIELD MPLE

&3} Qo g &3 Qo 5 2! Qo s
median  -2.005 1.002 3.022 -1.851 1.091 3.166 -1.997 1.001 3.009
0.05 -2.116 0.892 2.665 -2.274 0.866 2.998 -2.098 0.924 2.514
0.95 -1.902 1.110 3.414 -1.670 1.861 4.092 -1.895 1.096 3.425
n = 200 MCMC-MLE MEAN-FIELD MPLE

831 Qo g a1 Qo s 31 Qo g
median  -2.003 1.000 2.959 -1.923 1.030 3.107 -1.984 1.000 2.847
0.05 -2.151 0934 2314 -2.059 0.922 3.000 -2.104 0.951 2.096
0.95 -1.902 1.064 3944 -1.836 1.164 4.222 -1.861 1.039 3.666

Notes. See notes for Table 4.1.
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B.3. Model with triangles. The second set of simulations involves a model with no two-stars,
that is 8 = 0, in Table B.4. In this specification our mean-field approximation seems to do better

than the other estimators, at least for this small networks.

TABLE B.4. Monte Carlo estimates, comparison of three methods. True parameter
vector is (G, G, y) = (—2,1,—2)

n = 50 MCMC-MLE MEAN-FIELD MPLE

a%) % 9 ay a7 Y ay Qo Y
median -2.024 1.026 -13.959 -2.000 1.005 -2.000 -2.031 1.012 -9.804
0.05 2384 0.622 -60.419 -2.321 0.168 -6.425 -2.398 0.758 -45.881
0.95 -1.689 1.457 49.585 -0.739 2.246 -1.777 -1.809 1.394 21.696
n = 100 MCMC-MLE MEAN-FIELD MPLE

a%) iy 9 ay &% Y ay iy Y
median -2.006 1.019 -6.053 -1.967 1.035 -2.007 -2.002 1.015 -4.980
0.05 -2.164 0.832 -35.171 -3.472 0.951 -7.368 -2.124 0.876 -23.937
0.95 -1.824 1.183 27.361 -1.388 3.763 -1.910 -1.890 1.153 13.519
n = 200 MCMC-MLE MEAN-FIELD MPLE

a%) Qg Y ay Qg Y ay Qg Y
median -2.007 1.001 -1.002 -1.972 1.031 -2.006 -2.003 1.000 -1.913
0.05 -2.083 0.901 -23.049 -2.014 1.008 -2.115 -2.061 0.929 -15.721
0.95 -1.931 1.095 16.760 -1473 1.636 -1983 -1.952 1.072 9.153

Notes. See notes for Table 4.1.
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B.4. Some examples of nonconvergence. In Table B.5 we show an example in which the mean-
field approximation performs worse. While the median point estimate is in line with the other
estimators, the range of values is quite large. Table B.6 also shows a case in which parameter [ is
estimated poorly.

There are several possible explanations for this poor convergence. First, it may be that we are
not finding the maximizer of the approximation variational problem (2.9), given the local nature
of updates (4.1). In these simulations we do not start the matrix p(? at different initial values,
therefore we converge to a local maximum that may not be global. Our code allows the researcher
to initialize p(*) at different random starting points. This can improve convergence. In principle
we should increase the number of re-starts as n grows, as it is known that these models may have
multiple modes. Ideally, one can use a Nelder-Mead or Simulated Annealing algorithm to find
the maximizer of the variational problem, but this is more time-consuming. All these ideas lead
to simple parallelizations of our package functions that are beyond the scope of the present work.
Second, the tolerance level that we use ¢;,; = 0.0001 may be too large. Third, the likelihood may
exhibit a phase transition and thus a small difference in parameters may cause a large change in
the behavior of the model. We conjecture that some of these issues are related to identification and

we plan to explore this in future work.
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TABLE B.5. Monte Carlo estimates, comparison of three methods
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vector is (&q, &z, 5,7) = (—2,1,—-2,1)

. True parameter

n = 50 MCMC-MLE MEAN-FIELD MPLE

aq a%) B Y aq o%) B Y aq Qo B Y
median -2.053 1.000 -0.719 -9.252  -2.031 0979 -1.996 1.001 -2.025 0.994 -1.111 -7.920
0.05 2463 0425 -10.661 -116.527 -2.164 0.872 -2.104 0921 -2.405 0.698 -12.867 -66.600
0.95 -1.525 1.404 7.641 54.050 -1.934 1.123 -1.880 1.123 -1.536 1.359 2.807 28.835
n = 100 MCMC-MLE MEAN-FIELD MPLE

aq 9 B Y ay (g B g arq (g B g
median -1.975 0.998 -1.982 4.475 -2.047 0972 -1996 1.005 -1.971 1.005 -2.366 5.529
0.05 -2.251 0.788 -6.647 -64.548 -2.103 0.927 -2.051 0.878 -2.211 0.866 -7.472 -37.758
0.95 -1.734 1.234 2.649 61.304 -1.999 1.043 -1.940 1.048 -1.715 1.176 1.158 27.884
n = 200 MCMC-MLE MEAN-FIELD MPLE

aq a9 B Y aq g B Y aq a9 5 Y
median -1.998 1.010 -2.095 -2.905 -2.049 0971 -1.997 1.001 -1.977 1.006 -2.428 0.042
0.05 -2.244 0.885 -5.865 -32.144 -2.115 0952 -2.015 0977 -2.171 0.927 -6.820 -20.504
0.95 -1.810 1.128 2.239 37.402 -2.025 1.046 -1951 1.026 -1.775 1.087 0914 22.035
n = 500 MCMC-MLE MEAN-FIELD MPLE

&y o2 B Y aq g B Y a a2 5 g
median -1.997 1.008 -2.190 -1.908 -2.071 0997 -1.986 0.999 -1.993 1.006 -2.229 -0.901
0.05 -2.107 0.958 -4.097 -19.067 -5907 0.966 -2.634 0930 -2.094 0974 -4.127 -12.291
0.95 -1.889 1.060 0.304 16.596 -2.043 5974 -1.861 1.168 -1.883 1.034 -0.335 10.046

Notes: see notes for Table 4.1.
TABLE B.6. Monte Carlo estimates, comparison of three methods. True parameter
vector is (@, Gs, B,7) = (—2,1,2,—1)

n = 50 MCMC-MLE MEAN-FIELD MPLE

a Qo B 0 & o B Y & o B g
median -1.999 0991 1982 -2.664 -1.887 0.934 5.845 -1.000 -1.956 0.996 1.547 -0.469
0.05 2476 0.626 -2.400 -34.797 -2.289 0.675 3.688 -1.516 -2.453 0.765 -4.344 -26.769
0.95 -1.516 1.279 7.879 27.501 -1.673 1.344 9.026 -0.888 -1.346 1.250 6.045 15.593
n = 100 MCMC-MLE MEAN-FIELD MPLE

a o B 0 &y Qo B Y a ot B g
median -1.989 0980 2.025 0.280 -1.850 0.940 4.793 -1.001 -1.987 0.987 1.823 -0.149
0.05 -2.245 0.788 -0.044 -17.684 -2.074 0.729 4.128 -1.103 -2.239 0.844 -0.802 -15.650
0.95 -1.762 1.163 4261 15.150 -1.693 1.157 6.897 -0.885 -1.711 1.150 4.115 11.113
n = 200 MCMC-MLE MEAN-FIELD MPLE

a ot B 0 &y o B Y & ot B g
median -1.976 0986 1.578 0483 -1.844 0916 5.223 -1.000 -1.970 0.994 1.551 -0.960
0.05 -2.191 0.894 -0.231 -13.421 -1978 0.812 4.321 -1.084 -2.173 0924 -0.822 -11.144
0.95 -1.805 1.089 3.920 14.010 -1.783 1.033 6.900 -0.920 -1.736 1.076 3.857 11.229

Notes. See notes for Table 4.1.
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ONLINE APPENDIX - NOT FOR PUBLICATION

APPENDIX C. ASYMPTOTIC RESULTS

In this section we consider the model as n — co. We have seen previously that the log normal-
izing constant v, (v, 3,) can be approximated by ¥ (u (o, 8,7)) by the mean-field approxima-
tion, where p(c, 3,7) solves the optimization problem in (2.9) and ¥ (u(cx, 8,)) is its optimal

value, where we recall that

1 B gl
O3 (e, B,7)) = sup - E Qijflij + 5—5 E Hijhjk + — E Fig Hjk Mok
w2, s | A 2n° ~ 6n° <~
HE0,1]™ " p5=p15;,Y5,5 i,j i,k i3,k
1
~ 53 (125 1og iy + (1 — puig) log (1 — puiz)] ¢

1,
We will study the limit as n — oo. Before we proceed, we need a representation of the vector o
in the infinite network. The following assumption guarantee that we can switch from the discrete

to the continuum.

ASSUMPTION C.1. Assume that

;= a(i/n,j/n),

where a(z,y) : [0,1]> = R is a deterministic exogenous function that is symmetric, i.e., a(x,y) =

aly,z). 7

Since we have n players, the number of types for the players must be finite, although it may

n(n+1)
2

grow as n grows. «;; are symmetric, and can take at most values. As n — oo, the number

of types can become infinite and «(z,y) may take infinitely many values. On the other hand, in

terms of practical applications, finitely many values often suffice '*.

17To ease the notations, we project ®3-9:1 X; onto [0, 1] and the function (7;, 7;) defined previously is now re-defined
from [0, 1] to R.

181f an entry of the vector 7; is continuous, we can always transform the variable in a discrete vector using thresholds.
For example, if X; = [$50,000,$200,000], we can bucket the incomes into three levels, low: [$50,000,$100,000),
medium [$100,000,$150,000) and high: [$150,000, $200,000].
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FIGURE C.1. Examples of function «(z,y).
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The figure provides several examples of possible partitions of the net benefit function a(x, y) with
finite covariates. The asymptotic version of this function is defined over the unit square.

ASSUMPTION C.2. We assume that o(x,y) is unifomly bounded in x and y:

(C.1) sup |a(z,y)| < oo.
(z.y)€[0,1]?
As a simple example, let us consider gender: the population consists of males and female agents.

For example, half of the nodes (population) are males, say « = 1,2,..., 3 and the other half are

females, 7 = 2 + 1,2 + 2,... n."” That means, « x,1) takes three values according to the three
2 )9 ) ) Yy g

Here, we assume without loss of generality that n is an even number.
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regions:
) 1
{(«T,y) 10 < T,y < 5}7
o1
{($7y) ) <7,y < 1}7

{(zy):0<z<i<y<1}U{(z,y):0<y<j<z<l},

and these three regions correspond precisely to pairs: male-male, female-female, and male-female.

This example is represented in Figure C.1(C).

The work of Chatterjee and Diaconis (2013) show that the variational problem in (2.7) translates
into an analogous variational problem for the graph limit.”" In the special case a(z,y) = a, it is
shown in Chatterjee and Diaconis (2013) that as n — oo the log-constant of the ERGM converges

to the solution of the variational problem (C.3), that is

(C.2) Un(a, B,7) = ¥(a, B,7),

where

(C.3)

(o ﬁfy-:gy};{ // (x,y)dxdy + = /// (x,y)h(y, z)dxdydz
/ //“aw (y, 2 sz@@@——/ / xydM%

where

(C4) W= {h:[0,1 = [0,1], h(z,y) = h(y,z),0 < z,y < 1},

and we define the entropy function:
I(z) :=xlogx + (1 — x)log(l — x), 0<z<1,

with 7(0) = I(1) = 0.

205ee also Mele (2017) for similar results in a directed network.
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In essence the first three terms in (C.3) correspond to the expected potential function in the

continuum, while the last term in (C.3) corresponds to the entropy of the graph limit.

We will show that (C.2) holds with

(C.5)

e 57_:,3%{// a(z, y)h(z, y)dedy + 2 /// (2, y)h(y, 2)dzdydz
/// (x,y)h(y, z )h(zxdxdydz——// h(z,y) dwdy}

The function A in the expressions above is known as the graphon from the graph limits literature
2! large deviations literature for random graphs®* and analysis of the resulting variational prob-

> and it is a representation of an infinite network, where h is a simple symmetric function

lem.
h:[0,1]? — [0,1], and h(x,y) = h(y, ). Note that our goal is to approximate )2 and hence
¥, by 1, whose definition involves the function h, and we call such a function a graphon in the
rest of the paper, to be consistent with the literature, while we are not attempting here to establish
a theory of graph limits to allow nodal covariates. That is an interesting research direction worth
investigating in the future, but is out of the scope of the current paper.

The following proposition shows that for a model with finitely many types the variational ap-

proximation is asymptotically exact.

PROPOSITION C.1. Under Assumptions C.1 and C.2, as n — 00

Unle, B, 7) = (e, B,7),

where ¥ (a, B,7) is defined in (C.5).

Proof. Tt follows directly from Theorem 3.1 and v (u(a, B,7)) = ¥(a, B,7),asn — co. O

The proposition states that as n becomes large, we can approximate the exponential random

graph using a model with independent links (conditional on finitely many types). This is a very

21See Lovasz (2012), Borgs et al. (2008)
225ee Chatterjee and Varadhan (2011), Chatterjee and Diaconis (2013)
23See Aristoff and Zhu (2018), Radin and Yin (2013) among others.
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useful result because the latter approximation is simple and tractable, while the exponential ran-
dom graph model contains complex dependence patterns that make estimation computationally

expensive.

C.1. Approximation of the limit log normalizing constant. We can analyze and provide an ap-
proximation of the log-constant in the large network limit. The variational formula for ¢ («, 3, )
is an infinite-dimensional problem which is intractable in most cases. Nevertheless, we can al-
ways bound the infinite dimensional problem with finite dimensional ones (both lower and upper
bounds), at least in the absence of transitivity. For details, see Proposition E.2 in the Online Ap-
pendix. The lower-bound in Proposition E.2 coincides with the structured mean-field approach
of Xing et al. (2003). In a model with homogeneous players, the lower-bound corresponds to the
computational approximation of graph limits implemented in He and Zheng (2013).

In the case of extreme homophily, we can also obtain finite-dimensional approximation, see

Proposition E.1 in the Online Appendix.

C.2. Characterization of the variational problem. We recall that the log normalizing constant

in the n — oo limit is given by the variational problem:

(C.6) ¥(a, 231/?}{// a(x,y)h(z,y)dxdy + = /// (x,y)h(y, z)dzdydz
+%/0 /0 /O h(z, y)h(y, 2)h(z, 2)dedydz

— 5 | [ e toste.) + (0 = he. ) et — )] di .

PROPOSITION C.2. The optimal graphon h that solves the variational problem (C.6) satisfies
the Euler-Lagrange equation:

(C.7)
20(z,y) + 8 /01 Wz, y)dz + /01 bz, y)dy + 7/01 h(z, 2)h(y, 2)d= = log (%) |
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Proof. The proof follows from the same argument as in Theorem 6.1. in Chatterjee and Diaconis

(2013). 0

COROLLARY 1. If a(x,y) is not a constant function, then the optimal graphon h that solves the

variational problem (C.6) is not a constant function.

Proof. If the optimal graphon / is a constant function, then (C.7) implies that « is a constant

function. Contradiction. 0

In general, if a graphon satisfies the Euler-Lagrange equation, that only indicates that the graphon
is a stationary point, and it is not clear if the graphon is the local maximizer, local minimizer or
neither. In the next result, we will show that when [ is negative, any graphon satisfying the Euler-

Lagrange equation in our model is indeed a local maximizer.

PROPOSITION C.3. Assume that § < 0 and v = 0. If h is a graphon that satisfies the Euler-

Lagrange equation (C.7), then h is a local maximizer of the variational problem (C.0).

Proof. Let us define

1 1 11l
(C.8) A[h] ::/0 /0 a(x,y)h(m,y)dxdy—i—g/o /0 /0 h(z,y)h(y, z)dzdydz

1 1ot
=5 | o) loghte.p) + (1= he.9)) log(1 ~ A, y) dady.
0o Jo
Let A satisfy (C.7) and for any symmetric function g and € > 0 sufficiently small, we have

(C9)  Alh+eg] — AR

=€ ﬂ/ (/ xydy>2x——//f” Wz, y))g* (x, y)dady
- 6/(/ xydy) w3 [ e

and since § < 0, we conclude that A is a local maximizer in (C.6). 0

+O(€%)

+0(€),
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Remark C.1. In general, the variational problem for the graphons and the corresponding Euler-

Lagrange equation (C.7) does not yield a closed form solution. In the special case f = v = (),

(C.10) ¥(a,0,0) = sup {// (x,y)h(z,y)dxdy — —// h(z,y) )dxdy}
hew 0,1]2 0,1]2

where [(z) := xlogx + (1 — z)log(1 — x) and it is easy to see that the optimal graphon h(z,y)

e20(z,y)

is given by h(x,y) = 2a(@ 911’

and therefore, 1)(c,0,0) = 3 ff01 log(1 + @) dxdy.

APPENDIX D. DETAILS OF EQUILIBRIUM ECONOMIC FOUNDATIONS

D.1. Setup and preferences. Consider a population of n heterogeneous players (the nodes), each
characterized by an exogenous type 7; € ®f:1Xj, 1 =1, ...,n. The attribute 7; is an S-dimensional
vector and the sets X; can represent age, race, gender, income, etc. 2 We collect all 7;’s inan n x S
matrix 7. The network’s adjacency matrix g has entries g;; = 1 if ¢ and j are linked; and g;; = 0
otherwise. The network is undirected, i.e. g;; = g;i, and g;; = 0, for all i’s.”” The utility of player

718
RN B
(D.1) ui(g,7) = E aijgij + E 9ij9jk

where «;; := v(7;, 7;) are symmetric functions v : ®7_, X; x®7_ X; — Rand v(7;, ;) = v(7, 7;)
for all ¢, j; and [ is a scalar. The utility of player ¢ depends on the number of direct links, each
weighted according to a function v of the types 7. This payoff structure implies that the net benefit
of forming a direct connection depends on the characteristics of the two individuals involved in the
link.

Players also care about the number of links that each of their direct contacts have formed.*® For
example, when 5 > 0, there is an incentive to form links to people that have many friends, e.g.
popular kids in school. On the other hand, when § < 0 the incentive is reversed. For example, one
2For instance, if we consider gender and income, then S = 2, and we can take ®?:1Xj = {male,female} x
{low, medium, high}. The sets X can be both discrete and continuous. For example, if we consider gender and
income, we can also take ®§:1Xj = {male,female} x [$50,000,$200,000]. Below we restrict the covariates to be
discrete, but we allow the number of types to grow with the size of the network.

ZExtensions to directed networks are straightforward (see Mele (2017)).
26The normalization of [ by n is necessary for the asymptotic analysis.
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can think that forming links to a person with many connections could decrease our visibility and
decrease the effectiveness of interactions. Similar utility functions have been used extensively in
the empirical network formation literature.”’

The preferences in (D.1) include only direct links and friends’ populatity. However, we can also
include other types of link externalities. For example, in many applications the researcher is inter-
ested in estimating preferences for common neighbors. This is an important network statistics to
measure transitity and clustering in networks. In our model we can easily add an utility component
to capture these effects.

n
(D.2) Z ®ijGij + g Z 9ij9jk + % >0 giigikgnis
j=1 k=1 j=1 k=1
These preferences include an additional parameter -y that measures the effect of common neighbors.

The potential function for this model is

n n

(D3) Qn( g, Z Z Odl]glj 2ﬁn 9ij 9k + Z Z 9595k ki-

i=1 j=1 i=1 j=1 k=1 ]lkl

3

In general, all the results that we show below extend to more general utility functions that include
payoffs for link externalities similar to (2.5).

The probability that 7 and 7 meet can depend on their networks: it could be a function of their
common neighbors, or a function of their degrees and centralities, for example. In Assumption D.1,
we assume that the existence of a link between ¢ and j does not affect their probability of meeting.
This is because we prove the existence and functional form of the stationary distribution (2.3)
using the detailed balance condition, which is not satisfied if we allow the meeting probabilities to
depend on the link between ¢ and ;.

The model can easily be extended to directed networks and the results on equilibria and long-
run stationary distribution will hold. The results about the approximations of the likelihood shown

below will also hold for directed networks, with minimal modifications of the proofs.

27See Mele (2017), Sheng (2012), DePaula et al. (2011), Chandrasekhar and Jackson (2014), Badev (2013), Butts
(2009).
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Finally, while our model generates dense graphs, the approximations using variational methods

and nonlinear large deviations that we develop in the rest of the paper also work in moderately
sparse graphs. More precisely, the utility of player 7 is given by

(D4) Z O%] gzy + - Z ngg]k + — Z Zgw.g]kgku

7=1 k=1 7=1 k=1

where \a | |3™] and |y(™| can have moderate growth in n instead of being bounded. We will

give more details later in our paper. **

Example D.1. (Homophily) Consider a model with v(t;,7;) = V — ¢(1;,7;), where V. > 0 is
the benefit of a link and c(7;,7;) (= ¢(7j,7;)) is the cost of the link between i and j. To model

homophily in this framework let the cost function be

C l.fTi:Tj,

C l.fTi#Tj.

(D.5) c(ri, ;) =

For example, consider the parameterization 0 < ¢ <V < C and 8 = 0, v = 0. In this case
the players have no incentive to form links with agents of other groups. On the other hand, if we
have 0 < ¢ <V < Cand 8,7 > 0, also links across groups will be formed, as long as (3, are

sufficiently large.

Example D.2. (Social Distance Model) Let the payoff from direct links be a function of the social
distance among the individuals. Formally, let v(T;, 7;) := nd(7;, ;) —c, where d(7;, ;) is a distance
function, n is a parameter that determines the sensitivity to the social distance and ¢ > 0 is the
cost of forming a link.” The case withn < 0 represents a world where individuals prefer linking to
similar agents and 1) > 0 represents a world where individuals prefer linking with people at larger
social distance. Note that even when 1 < 0, if we have 3,y > 0 sufficiently large, individuals may

still have an incentive to form links with people at larger social distance.

2See Chatterjee and Dembo (2016) for additional applications of nonlinear large deviations.
See Iijima and Kamada (2014) for a more general example of such model.
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D.2. Meetings and equilibrium. The network formation process follows a stochastic best-response

dynamics:*

in each period ¢, two random players meet with probability p;;; upon meeting they
have the opportunity to form a link (or delete it, if already in place). Players are myopic: when
they form a new link, they do not consider how the new link will affect the incentives of the other

player in the future evolution of the network.

ASSUMPTION D.1. The meeting process is a function of types and the network. Let g_;; indicate

the network g without considering the link g;;. Then the probability that © and j meet is
(D.6) pij = p(Ti, Tj, g—i5) >0
for all pairs i and j, and i.i.d. over time.

Assumption D.1 implies that the meeting process can depend on covariates and the state of
the network. For example, if two players have many friends in common they may meet with high
probability; or people that share some demographics may meet more often. Crucially, every pair of
players has a strictly positive probability of meeting. This guarantees that each link of the network
has the opportunity of being revised.

Upon meetings, players decide whether to form or delete a link by maximizing the sum of their
current utilities, i.e. the total surplus generated by the relationship. We are implicitly assuming
that individuals can transfer utilities. When deciding whether to form a new link or deleting an
existing link, players receive a random matching shock ¢;; that shifts their preferences.

At time ¢, the links g;; is formed if
ui(gi; = 1, 9—ij, T)Hui(gi; = 1, 95, 7)+€i5(1) > ui(gi; = 0, 9—i5, 7)+ui(gi; = 0, 9—i5, 7)+€i5(0) .
We make the following assumptions on the matching value.

ASSUMPTION D.2. Individuals receive a logistic shock before they decide whether to form a

link (i.i.d. over time and players).

30See Blume (1993), Mele (2017), Badev (2013).
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The logistic assumption is standard in many discrete choice models in economics and statistics
(Train (2009)).

We can now characterize the equilibria of the model, following Mele (2017) and Chandrasekhar

and Jackson (2014). In particular, we can show that the network formation is a potential game

(Monderer and Shapley (1996)).

PROPOSITION D.1. The network formation is a potential game, and there exists a potential

function Q,,(g; «, 8) that characterizes the incentives of all the players in any state of the network
/8 n n n ’Y n n n
(D.7) n(g; 0, B) = Z Z @i + 5 Z Z Z 9ii9ik + 5 Z Z Z 9ij9jkYri-
i=1 j=1 i=1 j=1 k=1 i=1 j=1 k=1
Proof. The proposition follows the same lines as Proposition 1 in Mele (2017) and it is omitted for

brevity. U

The potential function @),,(g; , 5) is such that, for any g;;

Qn(g;a, B) — Qu(g — 15, B) = ui(g) + ui(g) — [ui(g —ij) +u;(g —ij)].

Thus we can keep track of all players’ incentives using the scalar ), (g; «v, 3). It is easy to show that
all the pairwise stable (with transfers) networks are the local maxima of the potential function.’’
The sequential network formation follows a Glauber dynamics, therefore converging to a unique

stationary distribution.

THEOREM D.1. In the long run, the model converges to the stationary distribution T,, defined

as

exp [Qn(g; a, )]
Y weq XD [Qn(w; o, B)]

where T,,(g; a, B) = n72Q.(g; v, ),

(D.8) Tn(g; o, B) =

= exp {n* [Tu(g; @, B) — u(e, B)]},

1
(D.9) Un(a, ) = —log y exp [T, (w; o B)]
weg
31 A network g is pairwise stable with transfers if: (1) gij = 1= u(g,7) +u;(9,7) > ui(g —ij,7) + u;(g —ij,7)

and (2) gi; = 0 = u;(g,7) +u;(g,7) > wi(g +ij,7) + uj(g + ij, 7); where g + ij represents network g with the
addition of link g;; and network g — ij represents network g without link g;;. See Jackson (2008) for more details.
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andg = {CL) = (wij)lgi’jgn : wij = Cdji < {0, 1},(4)“' = 0,1 S Z,j S n}

Proof. The proof is an extension of Theorem 1 in Mele (2017). See also Chandrasekhar and

Jackson (2014) and Butts (2009). ]

Notice that the likelihood (2.3) corresponds to an ERGM model with heterogeneous nodes and
two-stars. As a consequence our model inherits all the estimation and identification challenges of

the ERGM model.

APPENDIX E. SPECIAL CASE: THE EDGE-STAR MODEL

The general solution of the variational problem (C.3) is complicated. However, there are some
special cases where we can characterize the solution with extreme detail. These examples show
how we can solve the variational approximation in stylized settings, and we use them to explain
how the method works in practice. In this section, we consider the special case in the absence of

transitivity, i.e. 7 = 0 and we get further results for the edge-star model.

E.1. Extreme homophily. We can exploit homophily to obtain a tractable approximation. Sup-
pose that there are M types in the population. The cost of forming links among individuals of the
same group is finite, but there is a large cost of forming links among people of different groups
(potentially infinite). We show that in this case the normalizing constant can be approximated
by solving M independent univariate maximization problems. In the special case of extreme ho-

mophily, our model converges to a block-diagonal model.
PROPOSITION E.1. Let 0 = ag < a; < --- < ap = 1 be a given sequence. Assume that
(E.1) a(z,Y) = mm, if Q1 < 2,4 < Gy, m=1,2,..., M.

and a(z,y) < —K otherwise is a given function. Let V)(«, [3,0; —K) be the variational problem

for the graphons and («, 3,0; —o0) = limg o ¥(av, B,0; —K). Then, we have

M 5 1
(E.2) Y(a, ,0; —00) = Z(am — Qp_1)? sup {Ozmmx + —x? — —I(m)} .

0<z<1 2 2
m=1
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Proof. First, observe that

(E3)  ¥(a,B,0;—o0)

= sup {Zaz// h(z,y)dxdy + = / / z,y)h(y, z)dxdydz
hew- [@i—1,a;]2

3 M a; 2
= sup h(z,y)dzdy + = / (/ h(zx,y dy) dx
hew- { //az 1,a;)? 2 ; -1 ai—1 ( )

M

a; 2
- Z sup {ocz// h(z,y)dxdy + B/ (/ h(x,y)dy) dx
i=1 Milai—1,a4] —>[0 1] [ai—1,ai]? —1 a;i—1

h(z,y)=h(y,z)

1
5[ ey},
lai—1,a:]?

where

i=1

M
(E.4) W™ = {h €W : h(z,y) =0 for any (z,y) ¢ U[ai_l,ai]Q} :

By taking h to be a constant on [a;_1, a;]?, it is clear that

M 5 .
(E.5) Y(a, B,0; —00) > Z(ai —a;—1)° sup {Oéﬂ + 5932 - —](x)} :

0<z<1 2
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By Jensen’s inequality
M

(E6) (a,6,0,-00) <3 sup {ai [ ( [ h(x,wdy) dr

i=1 h:[aifl,ai]Q%[O,l]
h(z,y)=

(z,y)=h(y,z)
/B a; a; 2
+—/ / h(z,y)dy | dx
2 a;—1 a;—1
_1(._.)/%1 1 /h( Vdy ) d
9 a; a;—1 - Qi — ;1 oy x,y)ay X

M 5 )
< Z(ai —a;_1)* sup {ai:c + 53:2 — 5[(35)} :
=1

0<z<1

O

The net benefit function «(x, y) assumed in the Proposition is shown in Figure C.1(D). Essen-
tially this result means that with extreme homophily, we can approximate the model, assuming
perfect segregation: thus we can independently solve the variational problem of each type. This
approach is computationally very simple, since each variational problem becomes a univariate
maximization problem.

The solution of such univariate problem has been studied and characterized in previous work by
Chatterjee and Diaconis (2013), Radin and Yin (2013), Aristoff and Zhu (2018) and Mele (2017).
It can be shown that the solutions )., where m = 1, .., M, are the fixed point of equations

exp [Oémm + B,um]
E.7 m — )
(ED Hm = T exp [t + Bion]

for each group m, and Su, (1 — pr,) < 1. The global maximizer y, is unique except on a phase
transition curve {(mm, ) : Qmm + 8 = 0, i < —1}, see e.g. Radin and Yin (2013); Aristoff
and Zhu (2018). It is shown in Chatterjee and Diaconis (2013) that the network of each group

corresponds to an Erdds-Rényi graph with probability of a link equal to p,.

E.2. Analytically Tractable Bounds. In this section, for the edge-star model, we provide analyt-

ically tractable bounds for ¢(«, 3,+) when v = 0.
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PROPOSITION E.2. Let vy =0and 0 = ag < a1 < --- < ap—1 < ap = 1 be a given sequence.

Let us assume that
alz,y) = am, ifam_ 1 <x<ay,anda_1 <y <a, wherel < m,l < M.

Then, we have

M M
sup Z(am - am—1){ Z(az - al—l)amluml
0<uml<1

U1 =g 1 Sl <M ™1 =1

+ g <Z(al - az—l)umz) - %;(al - al—l)[(“ml)}

=1

M 3 M 2

< E (@p — Gm—1) SUp E ap — Q1) QU + = § ap — ag—1) Uy
— 0<um<1 | < 2 \'=
m= 1<iI<M = =

_ %i(al — (ll_l)l<uml)}'

=1

Proof. To compute the lower and upper bounds, let us define

1 @
(E.8) wi(z) = —/ h(z,y)dy, forany a; | < x < a;.
j = Aj—1 Ja;_4

j—

We can compute that

(E.9) // (z,y)h(z,y)dxdy = ZZ —aj_q / a;wii(x)de.
0,1]2 a;—1

Moreover,

(E.10) §/01 /01 /Olh(x,y)h(y,z)dxdydz: g/o (/ h(z,y) dy)de

gi/ (gi —a;-1) Uzy($)>2dx.
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By Jensen’s inequality, we can also compute that

(E.11)
ST
/ / h(z,y))dxdy = — Z/ Z/ I(h(x,y))dy] dx
Lj=1 /a1
1 M a; r M 1 aj
)3 | P e / I<h<x,y>>dy] o
1 M a [ M 1 aj
> 52/@ Z(aj —aj-1)] <m/a h(:t,y)dy)] dx
i=1 Yai-1 | j=1 i1
LM e M
) DR e
i=1 v ®i-1 j=1

Hence, by (E.9), (E.10), (E.11), we get
M M a 3 2
Y(a, 8,0) < ZZ(% - Clj—1)/ aiju(x)de + = Z/ ( —aj_ 1)uw(x)> dx

i=1 j=1 i—1

_ —Z / — ;1)1 (uy(x))dz

’Lljl

-

M M 2
S (az’ — Qi 1 sup { § a] 1 azgum E a] 1 uz]

0<u<1 \ o

1 1<j<M

1

N[ —

M
_E : j— aj-1) UU)}
Jj=1

On the other hand, by restricting the supremum over the graphons h(z, y)

(E.12) h(z,y) = wj, ifa,1 <z <aanda;_; <y < a;, where 1 <4, j <M,
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where (u;;)1<; j<m is a symmetric matrix of the constants, and optimize over all the possible values
0 < w;; <1, we get the lower bound:

M M
(E.13) (e, 5,0) > sup Z(ai — a1 {Z — Q1)U

0<u;;<1 i—
wij=uj3,1<6,j<M

ﬂ M 1 M
Ty > (a;—aj1)uy 5; i~ - 11(%)}-

J=1
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