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Abstract

We propose a model of directed network formation with heterogeneous players that
converges to a unique stationary equilibrium. Payoffs depend on direct links, but also
link externalities. We show that under mild assumptions, the network formation is
a potential game. The equilibrium characterization shows that the model nests the
exponential random graph model as a special case. The estimation is complicated by
an intractable likelihood, known up to a normalizing constant that is usually approx-
imated using simulation methods. However, standard local simulation strategies may
fail to converge to the correct distribution. Extending results from the graph limits
and large deviations literature, we show that identification and simulation problems
depend on the sign of the link externalities. Using the latter theoretical results, we
propose a modification of the algorithms for simulations that allows a more efficient
exploration of the likelihood. The posterior distribution of the structural parameters
is estimated using an exchange algorithm that avoids evaluation of the intractable con-
stant. We test the estimation strategy with artificial data, showing good performance
for moderate lengths of simulations.
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1 Introduction

Social networks are important determinants of individuals’ socioeconomic performance. An
increasing amount of evidence shows that the number and composition of social ties affects
employment prospects, school performance, risky behavior, adoption of new technologies,
diffusion of information and health outcomes.1

The literature on strategic models of network formation provides a framework to interpret
the observed network as the equilibrium of a game.2 However, the estimation and identi-
fication of strategic models is challenging. First, network formation models usually have
multiple equilibria, because linking generates externalities that are not fully accounted for
by individuals. Second, there is a curse of dimensionality: the number of possible network
configurations increases exponentially with the number of players. Finally, the data available
to the econometrician usually consist of a single network snapshot.

We develop a model of strategic network formation with heterogeneous players that
combines ingredients from the strategic and random network formation literature.3 We con-
tribute to the economic literature on network formation on three dimensions. First, while
most strategic models have multiple equilibria, we establish the existence of a unique station-
ary equilibrium, which characterizes the likelihood of observing a specific network structure
in the data. As a consequence, we can estimate the structural parameters using only one
observation of the network. Second, we propose a Bayesian Markov Chain Monte Carlo
algorithm that drastically reduces the computational burden for estimating the posterior
distribution of structural parameters. Finally, we analyze the model’s behavior in large net-
works, to study identification and bound the algorithm’s speed of convergence.

In the basic version of our model, players have preferences over network realizations and
individual characteristics. The utility function includes payoffs from direct links, but also
from linking externalities: reciprocated links, indirect links and popularity. In each period,
a player is randomly drawn from the population and meets another individual, according to
a random meeting technology. Upon meeting, the player has the opportunity to revise his
link. Before updating his linking strategy, the player receives a random shock to his pref-
erences, unobserved by the econometrician. The dynamic of the model follows a stochastic
best-response dynamics, and generates a sequence of directed networks.4

The theoretical results provide conditions that guarantee the existence of a potential
function, simplifying the analysis of the equilibria of the network formation game.5 The set
of Nash equilibria of the model corresponds to the maxima of the potential function. Under
mild restrictions on preferences, meeting technology and standard assumptions on prefer-

1For example, see the contributions of Topa (2001); Laschever (2009); Cooley (2010); De Giorgi et al.
(2010); Nakajima (2007); Bandiera and Rasul (2006); Conley and Udry (forthcoming); Golub and Jackson
(2011); Acemoglu et al. (2011).

2See Jackson (2008), Jackson and Wolinsky (1996), Bala and Goyal (2000), Currarini et al. (2009),
Currarini et al. (2010), De Marti and Zenou (2009), Echenique et al. (2006) for examples.

3See Jackson (2008) for a review of network formation models.
4The directed nature of the network is not essential to most of the results in this paper.
5See Monderer and Shapley (1996)
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ences shocks, we show that the sequence of networks generated by the model is a Markov
chain, and it converges to a unique stationary equilibrium distribution. The latter provides
the likelihood of observing a specific network realization in the long-run.

We show that in the special case of linear-in-parameters utility functions, the stationary
distribution belongs to the discrete exponential family, and our model coincides with some
specifications of the exponential random graph model (ERGM).6 Assuming that the network
observed in the data is a realization from the stationary distribution, we can estimate the
model using only one network observation.

Estimation of the posterior distribution for the structural preference parameters is com-
putationally very demanding because of the curse of dimensionality: the likelihood is known
up to a normalizing constant that cannot be computed even for very small networks.7 Tra-
ditional MCMC techniques like Metropolis-Hastings and Gibbs samplers are infeasible for
this model.

The statistical literature on likelihoods with intractable normalizing constants, suggests
to use MCMC simulation methods to approximate the normalizing constant.8 The usual
approach is to simulate the network using a local MCMC sampler: at each iteration we
randomly pick a link, and we update that link according to a Metropolis-Hastings ratio. We
show that such simulation strategy has several convergence problems, using a mix of graph
limits theory, large deviations theory and mean-field approximations for the exponential fam-
ily.9 While some of these problems were known to practitioners, we extend the approach of
Diaconis and Chatterjee (2011) to show precise asymptotic results that allow us to analyze
the identification, speed of convergence and feasibility of estimation for the model in some
special cases.

We show that for large networks, the normalizing constant solves a variational problem
in the space of probability density functions defined in the unit square. Furthermore, in the
special case of homogeneous players and (only) positive externalities from link formation, this
variational problem has closed-form solution. We prove that in such special case the model
is asymptotically indistinguishable from a directed Erdos-Renyi model. This implies that for
this special case, the identification breaks apart in the large n limit. Furthermore, we can
simplify the network sampler by simulating the model as a matrix of Bernoulli variables.

On the other hand, if at least one of the linking externalities is negative and sufficiently

6See Butts (2009), Snijders (2002), Chandrasekhar and Jackson (2014), Diaconis and Chatterjee (2011),
Wasserman and Pattison (1996), Caimo and Friel (2010).

7For a small network with 10 players, a state-of-the-art supercomputer may take several years to evaluate
the constant at a single parameter value. This makes traditional optimization algorithms infeasible.

8See Besag (1974), Geyer and Thompson (1992), Snijders (2002)
9The analysis presented here extends to directed network the methodology developed by Diaconis and

Chatterjee (2011). The main difficulty in the extension to directed networks is that the regularity conditions
used in Diaconis and Chatterjee (2011) are not sufficient in the directed networks, and we need to provide
different regularity conditions that guarantee compactness of the metric spaces in which the analysis is
performed. We also provide a detailed analysis of the variational problem in special cases, following an
approach similar to Radin and Yin (2013) and Aristoff and Zhu (2014). We provide the technical details in
Appendix D.
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large in magnitude, the variational problem cannot be solved at a directed Erdos-Renyi
model. This means that our model does not degenerate into an independent-links model,
and the linking externalities can be identified. This case is likely to be more relevant from
an empirical point of view, since when we include covariates and there is homophily, some
linking externalities will necessarily be negative. In this special case and in the general case
the network simulation approach is the only way to approximate the normalizing constant
and perform inference.10

We also extend the methodology of Bhamidi et al. (2011) to our directed network model,
and show that in the case of only positive linking externalities we may be unable to run the
simulations in feasible time or the model may converge to the wrong stationary distribution.
If we simulate the model using a local MCMC sampler, there is a region of the parameter
space in which the model converges to stationarity in exponential time, i.e. in order en

2

steps. This happens because in this region of the parameters, the variational problem has
two local maxima and the sampler can get stuck in the local maximum, never reaching the
global maximum. We also show that the size of the region of exponentially slow convergence
increases with the addition of higher order dependencies in the utility functions, e.g. utility
from common connections, or cycles.11

We propose a modification of the standard local sampler for network simulations to im-
prove the convergence problems, taking into account the previous theoretical analysis. We
construct a network sampler that makes large steps, allowing the chain to jump across Nash
equilibria more efficiently. In particular, it is crucial that the algorithm is allowed to make
steps whose size is proportional to the number of players n.12 If we consider a large step of
fixed dimension (say 20 links per iteration), there is a large enough n for which such sampler
becomes local with respect to the size of the network. We show evidence that such small
modification implies convergence to the correct stationary distribution. These larger steps
allow the sampler to jump to the global maximum of the variational problem, without get-
ting stuck in the local maxima. However, the cost of such modification is an increase in the
computational burden, that limits our technique to networks of moderate size (n ≈ 300/500).

We estimate the posterior distribution of the parameters using an approximate exchange
algorithm (Murray et al. (2006)) that samples from the posterior in two steps: first, it pro-
poses a new parameter value as in a standard Metropolis-Hastings samplers; second, given
the proposed parameter, it simulates the model using the modified network simulation al-
gorithm. We prove that this approximate algorithm is ergodic and converges to the correct
posterior distribution.

We test the algorithms with artificial data, showing that for moderate size networks, we

10An alternative approach consists of solving the variational problem directly, perhaps through some
discretization and approximation. However, at the time of writing it is not clear whether such an approach
is computationally less demanding than the simulation method. See He and Zheng (2013) and Mele (2015)
for simple examples.

11The inclusion of triangles it is known in the ERGM literature to create problems for the convergence
of the simulations. We provide complimentary results to Diaconis and Chatterjee (2011) that explain this
phenomenon.

12In other words it is crucial that the size of the step is not o(n).
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have good convergence properties, even with a relatively moderate amount of simulations.

This paper contributes to the literature on empirical models of network formation in several
dimensions. The challenges that lead to multiple equilibria and the curse of dimensionality
have been addressed in different ways, e.g. modeling the network formation as a sequential
process (Christakis et al. (2010)), restricting the type of externalities considered (Miyauchi
(2012), or using subnetworks as the unit of analysis (Sheng (2012), Chandrasekhar and
Jackson (2014)). Others have focused on the observable implications of homophily (Boucher
(2013)) or modeled the network formation as a game with imperfect information (Leung
(2014b)). Our model considers a sequential network formation process with complete infor-
mation and restricts the preferences to guarantee the existence of a potential function. While
the characterization using potential games has been considered in previous work (Jackson
and Watts (2001), Gilles and Sarangi (2004), Butts (2009)), we show that this modeling
strategy reduces the computational complexity of the simulations, because allows us to sim-
ulate changes in the potential levels, without keeping track of all the players.

Modeling the network formation externalities jointly with unobserved heterogeneity is
challenging. Indeed, Graham (2014) provides frequentist inference for a model with unob-
served heterogeneity, but rules out the network formation externalities that are crucial in our
model. We abstract from unobserved heterogeneity, which can be included in our model with
substantial additional computational effort. However, it is not clear whether it is possible to
separately identify unobserved heterogeneity from externalities using a single observation of
the network (Graham (2014)).

The literature considers identification in two settings. In the many networks asymp-
totics, the researcher observes multiple networks (Miyauchi (2012), Sheng (2012)). In the
large network asymptotics the econometrician observes only one single network, perhaps
large (Chandrasekhar and Jackson (2014), Graham (2014), Leung (2014a), DePaula et al.
(2014)). Our model is trivially identified in the many networks framework, because the like-
lihood belongs to the exponential family. The case of large networks is more complicated
and we provide an analysis for several special cases.

Our model generates a dense network, i.e. the probability of linking does not converge
to zero as the number of players grows large (Diaconis and Chatterjee (2011), Lovasz (2012),
Graham (2014)). Chandrasekhar and Jackson (2014) show that when we impose sparsity,
estimation of structural parameters is simpler in many specifications. DePaula et al. (2014)
show that sparsity is crucial for identification. In our model, we can impose a certain de-
gree of sparsity by forcing a link externality to be negative, and we show that such model
does not converge to an independent links model, thus guaranteeing identification of the link
externalities. Badev (2013) extends our model to include both binary actions and network
formation, with an application to smoking among teenagers. Hsieh and Lee (2012) and
Goldsmith-Pinkham and Imbens (2013) consider similar models.

The paper proceeds as follows. Section 2 describes the model, the equilibrium charac-
terization and the relation to ERGMs. In Section 3 we discuss the simulation methods for
network sampling and posterior sampling, providing a detailed analysis of the model’s be-
havior for large networks. In section 4 we show the estimation results with artificial data
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and Section 5 concludes.

2 A Model of Network Formation

2.1 Setup

Let I = {1, 2, ..., n} be the set of agents, each identified by a vector of A (exogenous)
characteristics Xi = {Xi1, ..., XiA}, e.g. gender, wealth, age, location, etc. Let the matrix
X = {X1, X2, ..., Xn} collect the vectors of characteristics for the population and let X
denote the set of all possible matrices X. Time is discrete.

The social network is represented as a n× n binary matrix G ∈ G, where G is the set of
all n × n binary matrices. The entry gij is equal to 1 if individual i forms a connection to
individual j, and 0 otherwise; by convention gii = 0, for any i. The network G is directed,
i.e. gij = 1 does not necessarily imply gji = 1.13

Let the realization of the network at time t be denoted as gt and the realization of the
link between i and j at time t be gtij. The network including all the current links but gtij, i.e.
gt\gtij, is denoted as gt−ij; while gt−i denotes the network matrix excluding the i-th row (i.e.
all the links of player i).

2.1.1 Preferences

The utility of player i from a network g and population attributes X = (X1, ..., Xn) at
parameter θ is given by

Ui (g,X; θ) =
n∑
j=1

giju
θu
ij︸ ︷︷ ︸

direct links

+
n∑
j=1

gijgjim
θm
ij︸ ︷︷ ︸

mutual links

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkv
θv
ik

︸ ︷︷ ︸
indirect links

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkiw
θw
kj

︸ ︷︷ ︸
popularity

(1)

where uθuij ≡ u (Xi, Xj; θu), m
θm
ij ≡ m (Xi, Xj; θm), vθvij ≡ v (Xi, Xj; θv) and wθwij ≡ w (Xi, Xj; θw)

are (bounded) real-valued functions of the attributes. The utility of the network is the sum
of the net benefits received from each link. The total benefit from an additional link has
four components.

When player i creates a link to agent j, he receives a direct net benefit uθuij that includes
both costs and benefits from the relationship. The net benefit can possibly be negative, e.g.
when only homophily enters payoffs of direct links, the net utility uθuij is positive if i and j
belong to the same group, while it is negative when they are of different types.

Players value linking externalities, i.e. links formed by other players. A player receives
additional utility mθm

ij if the link is mutual; a connection has different value when the other
party reciprocates.

Players value the composition of indirect connections. When i is deciding whether to

13The assumption of directed networks is not crucial to many of the results.
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create a link to j, she observes j’s connections and their socioeconomic characteristics. Each
of j’s links provides additional utility v(Xi, Xk; θv) to i. To be concrete, suppose there are
only two types: A and B. In this model, an agent who has the opportunity to form an
additional link, values a type-A individual with three links to type-B agents as a different
good than a type-A individual with two type-A connections and one type-B connection.14

In other words, individuals value both exogenous heterogeneity and endogenous heterogene-
ity: the former is determined by the socioeconomic characteristics of the agents, while the
latter arises endogenously with the process of network formation. In the baseline version of
the model we assume that only indirect links are valuable and they are perfect substitutes:
individuals do not receive utility from two-links-away contacts.15

The fourth component corresponds to a popularity effect. If individual i links j, he auto-
matically creates an indirect link for the all the agents that had a link to i. Thus i generates
an externality (positive or negative) for each k that formed a link to him in previous periods.
This externality makes i more or less popular.

2.1.2 Network Formation Process

The process of network formation follows a stochastic best-response dynamics (Blume (1993)),
generating a Markov chain of networks. The main ingredients of this process are random
meetings and utility maximization. The implicit assumption is that meetings are very fre-
quent, and the players can revise their linking strategies often.

Meeting Technology. At the beginning of each period a player i is randomly selected
from the population, and he meets individual j, according to a meeting technology. The
meeting process is a stochastic sequence m = {mt}∞t=1 with support I × I. The realizations
of the meeting process are ordered pairs mt = {i, j}, indicating which agent i should play
and which link gij can be updated at period t.16

The probability that player i is randomly chosen from the population and meets agent j
is defined as

Pr
(
mt = ij|gt−1, X

)
= ρ

(
gt−1, Xi, Xj

)
(2)

where
∑n

i=1

∑n
j=1 ρ (g,Xi, Xj) = 1 for any g ∈ G. The meeting probability depends on

the current network g (e.g. the existence of a common link between i and j) and the
characteristics of the pair. This general formulation includes meeting technologies with

14A similar assumption is used in De Marti and Zenou (2009) where the agents’ cost of linking depends
on the racial composition of friends of friends. Their model is an extension of the connection model of
Jackson and Wolinsky (1996), and the links are formed with mutual consent. The corresponding network is
undirected.

15This benchmark model can be extended to incorporate additional utility components, as shown below.
16Several models incorporate a meeting technology in the network formation process. Jackson and Watts

(2002) assume individuals meet randomly according to a discrete uniform distribution. Currarini et al. (2009)
introduce a matching process that is biased towards individuals of the same type. Christakis et al. (2010)
develop a dynamic model, where the sequence of meetings determines which players have the opportunity
to form a link in each period.
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a bias for same-type individuals as in Currarini et al. (2009). The simplest example of
meeting technology is an i.i.d. discrete uniform process with ρ (gt−1, Xi, Xj) = 1

n(n−1)
. An

example with bias for same-type agents is ρ (gt−1, Xi, Xj) ∝ exp [−d (Xi, Xj)], where d (·, ·)
is a distance function.

Utility Maximization. Conditional on the meeting mt = ij, player i updates the link gij
to maximize his current utility, taking the existing network gt−ij as given. We assume that
the agents do not take into account the effect of their linking strategy on the future evolution
of the network. The players have complete information, since they can observe the entire
network and the individual attributes of all agents.17 Before updating his link to j, individual
i receives an idiosyncratic shock ε ∼ F (ε) to his preferences that the econometrician cannot
observe. This shock models unobservables that could influence the utility of an additional
link. Player i links agent j at time t if and only if it is a best response to the current network
configuration, i.e. gtij = 1 if and only if

Ui
(
gtij = 1, gt−1

−ij , X; θ
)

+ ε1t ≥ Ui
(
gtij = 0, gt−1

−ij , X; θ
)

+ ε0t. (3)

We assume that when the equality holds, the agent plays the status quo.18 The network
formation process generates a Markov chain of networks, with transition probabilities deter-
mined by the meeting process and agents’ linking choices.

2.2 Equilibrium Analysis

We impose an additional assumption on the functional forms of the utility functions, which
provides important equilibrium and identification restrictions. We assume that the utility
mθm
ij obtained from mutual links is symmetric, and that the utility of an indirect link vθvij has

the same functional form as the utility from the popularity effect wθvij .

ASSUMPTION 1 (Preferences) The preferences satisfy the following restrictions

m (Xi, Xj; θm) = m (Xj, Xi; θm) for all i, j ∈ I
w (Xk, Xj; θv) = v (Xk, Xj; θv) for all k, j ∈ I

The symmetry in mij(θm) does not imply that a mutual link between i and j gives both
the same utility. If i and j have a mutual link, they receive the same common utility com-
ponent (mij(θm)) but they may receive different payoffs from direct or indirect links. Two
individuals with the same exogenous characteristics Xi = Xj who form a mutual link receive
the same uij(θu) and mij(θm), but they may have different payoffs from the additional link
because of the composition of their indirect contacts and their popularity. Therefore, the

17More precisely, to make a decision about linking, the player needs to observe his in-links and the out-links
of his friends.

18This assumption does not affect the main result and is relevant only when the distribution of the
preference shocks is discrete.
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first part of the assumption is necessary for identification of the utility from indirect links
and popularity.

The second part of the assumption imposes an identifying restriction to the externality
generated by i when creating a link to j: any individual k that has formed a link to i, has an
additional indirect contact, i.e. j, who agent k values by an amount w (Xk, Xj; (θw)). When
w (Xk, Xj; (θv)) = v (Xk, Xj; (θv)), an individual i values his popularity effect as much as k
values the indirect link to j, i.e., i internalizes the externality he creates.

Assumption 119 is the main ingredient that allows us to characterize the network forma-
tion as a potential game (see also Butts (2009) and Chandrasekhar and Jackson (2014) for
similar characterizations).

PROPOSITION 1 (Existence of a Potential Function) Under Assumption 1, the
deterministic component of the incentives of any player in any state of the network are
summarized by a potential function, Q : G × X → R

Q (g,X; θ) =
n∑
i=1

n∑
j=1

gijuij(θu) +
n∑
i=1

n∑
j>i

gijgjimij(θm) +
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkvik(θv), (4)

and the network formation game is a Potential Game.

Proof. See Appendix A

The intuition for the result is simple.20 Under the restrictions of Assumption 1, for any
player i and any link gij we have

Q (gij, g−ij, X; θ)−Q (1− gij, g−ij, X; θ) = Ui (gij, g−ij, X; θ)− Ui (1− gij, g−ij, X; θ)

Consider two networks, g = (gij, g−ij) and g′ = (1−gij, g−ij), that differ only with respect
to one link, gij, chosen by individual i: the difference in utility that agent i receives from
the two networks, Ui (g,X; θ)−Ui (g′, X; θ), is exactly equal to the difference of the potential
function evaluated at the two networks, Q (g,X; θ) − Q (g′, X; θ). That is, the potential is
an aggregate function that summarizes both the state of the network and the deterministic
incentives of the players in each state.

Characterizing the network formation as a potential game facilitates the analysis and the
simulations. To compute the equilibria of the model, there is no need to keep track of each

19The first part of the assumption is a normalization of the utility function that allows identification for the
utility of indirect links and popularity. The second part of the assumption is an identification restriction, that
guarantees the model’s coherency in the sense of Tamer (2003). In simple words, this part of the assumption
guarantees that the system of conditional linking probabilities implied by the model generates a proper joint
distribution of the network matrix.Similar restrictions are also encountered in spatial econometrics models
(Besag, 1974) and in the literature on qualitative response models (Heckman, 1978; Amemiya, 1981)

20See Monderer and Shapley (1996) for definitions and properties of potential games.
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player’s behavior: the potential function contains all the relevant information.21

To analyze the long run behavior of the model, I impose more structure on the meeting
technology.22

ASSUMPTION 2 (Meeting Process) The meeting probability between i and j does not
depend on the existence of a link between them, and each meeting has a positive probability
of occurring, i.e. ρ(gt−1, Xi, Xj) = ρ(gt−1

−ij , Xi, Xj) > 0 for any ij ∈ I × I

The meeting process is such that any player can be chosen and any pair of agents can meet.
This assumption guarantees that any equilibrium network can be reached with positive
probability. For example, a discrete uniform distribution satisfies this assumption. The
other restriction is for identification purposes: if we allow ρ to depend on the current link
between i and j, then we cannot write the likelihood in closed form. Using data from a
single network observation it is impossible to identify the function ρ unless we make very
restricting assumptions.

A Nash equilibrium is a network in which any player has no profitable deviations from
his current linking strategy, when randomly selected from the population. We can show that
the set of Nash networks corresponds to the local maxima of the potential function. Suppose
that the current network is a Nash network. As a consequence, if a player deviates from the
current linking strategy, he receives less utility.23 Since the change in utility for any agent is
equivalent to the change in potential, any deviation from the Nash network must decrease
the potential. It follows that the Nash network must be a local maximizer of the potential
function over the set of networks that differ from the current network for at most one link.

In the absence of preference shocks, the consequences of assumptions 1 and 2 are that
the model will evolve according to a Markov Chain, converging to one of the Nash networks
with probability one (see formal details in Appendix A). Suppose a player is drawn from the
meeting process. Such agent will play a best response to the current network configuration.
Therefore, his utility cannot decrease. This holds for any player and any period. It follows
that the potential is nondecreasing over time. Since there is a finite number of possible
networks, in the long run, the sequence of networks must reach a local maximum of the
potential, i.e., a Nash equilibrium.

21This property is key for the analysis of networks with many players: the usual check for existence of
profitable deviations from the Nash equilibrium can be performed using the potential, instead of checking
each player’s possible deviation in sequence. The computation of all profitable deviations for each player
involves n(n − 1)2n(n−1) operations: each player has n − 1 possible deviations, there are n players and
a total of 2n(n−1) possible network configurations. As it is shown below (Proposition 2), when the game
is a potential game, the computation of all Nash equilibria is equivalent to finding the local maxima of
the potential function. This corresponds to evalutating the potential function for all the 2n(n−1) possible
network structures. The latter task involves fewer operations by a factor of n(n − 1), thus decreasing the
computational burden.

22Christakis et al. (2010) assume that individuals can meet only once and their links remain in place forever.
This assumption is convenient when estimating a large network, but it does not allow the characterization
of the stationary equilibrium.

23When the utility from the equilibrium and the deviation is the same, the agent plays the status quo,
i.e., the Nash strategy.

10



The following standard parametric assumption on the shocks allows us to characterize
the stationary distribution and transition probabilities.

ASSUMPTION 3 (Idiosyncratic Shocks) The shock follows a Type I extreme value
distribution, i.i.d. among links and across time.

Under Assumptions 1-3, the network evolves as a Markov chain with transition probabilities
given by the conditional choice probabilities and the probability law of the meeting process
mt. One can easily show that the sequence [g0, g1, ...., gt] is irreducible and aperiodic.24 The
following theorem summarizes the main theoretical result.

THEOREM 1 (Uniqueness and Characterization of Stationary Equilibrium)
Consider the network formation game with idiosyncratic shocks, under Assumptions 1-3.

1. There exists a unique stationary distribution π(g,X; θ)

2. The stationary distribution π(g,X; θ) is

π (g,X; θ) =
exp [Q (g,X; θ)]∑

ω∈G
exp [Q (ω,X; θ)]

, (5)

where Q (g,X; θ) is the potential function (4).

Proof. In Appendix A

The first part of the proposition follows directly from the irreducibility and aperiodicity
of the Markov process generated by the network formation game. The uniqueness of the
stationary distribution is crucial in estimation, since one does not need to worry about
multiple equilibria. Furthermore, the stationary equilibrium characterizes the likelihood of
observing a specific network configuration in the data. As a consequence, we can estimate
the structural parameters from observations of only one network at a specific point in time,
under the assumption that the observed network is drawn from the stationary equilibrium.

The second part of the proposition provides a closed-form solution for the stationary
distribution. The latter can be interpreted as the probability of observing a specific network
structure, when the network is observed in the long run. In the long run, the system
of interacting agents will visit more often those states/networks that have high potential.
Therefore a high proportion of the possible networks generated by the network formation
game, will correspond to Nash networks.

The stationary distribution π (g,X; θ) includes a normalizing constant

c (G, X; θ) ≡
∑
ω∈G

exp [Q (ω,X; θ)] (6)

24 Intuitively, since the meeting probability Pr (mt = ij) > 0 for all ij, there is always a positive probability
of reaching a new network in which the link gij can be updated. The logistic shock assumption implies that
there is always a positive probability of switching to another state of the network, thus eliminating absorbing
states.
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that guarantees that (5) is a proper probability distribution. Unfortunately, this normalizing
constant greatly complicates estimation, since it cannot be evaluated exactly or approxi-
mated with precision. The details about how this problem is circumvented are presented in
the empirical strategy section.

2.3 Relation with Exponential Random Graphs

The Exponential Random Graph Model (ERGM) is a statistical model of random network
formation, with complex dependencies among links. This class of models posits that the
probability of observing a specific network is proportional to an exponential function of a
linear combination of network statistics. Exponential random graphs have been successfully
used to fit social network data, providing a useful benchmark for alternative models. How-
ever, as any random network formation model, they lack the equilibrium micro-foundations
of the strategic literature.25

PROPOSITION 2 (Exponential Family Likelihood)
Let Assumptions 1-3 hold. If the utility functions are linear in parameters, the stationary
distribution π (g,X; θ) belongs to the exponential family, i.e., it can be written in the form

π (g,X; θ) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

, (7)

where θ = (θu, θm, θv)
′ is a (column) vector of parameters and t (g,X) is a (column) vector

of canonical statistics.

Proof. See Appendix A

The vector t (g,X) = (t1 (g,X) , ..., tK (g,X)) is a vector of sufficient statistics for the
network formation model. This vector may include the number of links, the number of
whites-to-whites links, the number of male-to-female links and so on.

This likelihood is analogous to the one of exponential random graph models: we can
interpret some specifications of ERGMs as the stationary equilibrium of a strategic game
of network formation, where myopic agents follow a stochastic best response dynamics and
utilities are linear functions of the parameters. Not all the ERGM specifications are neces-
sarily compatible with our model, as explained in the extensions below.

25Frank and Strauss (1986) developed the theory of Markov random graphs. These are models of random
network formation in which there is dependence among links: the probability that a link occurs depends
on the existence of other links. Wasserman and Pattison (1996) generalized the Markov random graphs
to more general dependencies, developing the Exponential Random graph models. Snijders (2002) reviews
these models and the related estimation techniques.
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2.4 Extensions and discussion

Additional utility components. It is possible to modify the baseline utility function (1) to
include additional components. For example, one may be interested in studying preferences
that include utility from cyclic triangles effects, i.e. individual i links to j, j connects to k
and k links to i. The latter can be modeled as a component of the utility τ that varies with
the characteristics of the three players involved in the relationships, i.e. τ(Xi, Xj, Xk; θτ ) for
all i, j, k ∈ I. The utility is easily modified by including a term

∑n
j=1 gij

∑
k 6=i,j gjkgkiτijk(θτ ).

However, to guarantee the existence of a potential function, we need to restrict τ in anal-
ogous way as in Assumption 1: the function τ must satisfy τijk(θτ ) = τi′j′k′(θτ ) for any
i′, j′, k′ permutation of i, j, k. The potential is easily computed as before, by adding the term
1
3

∑n
i=1

∑n
j=1 gij

∑
k 6=i,j gjkgkiτijk(θτ ).

In general, it is possible to include additional utility components to (1) as long as we can
find restrictions on the payoffs that guarantee the existence of a potential function. Some
examples are provided in the proofs of Appendix D.

Undirected networks. The model is concerned about directed networks, but this is not
essential to most of the characterizations. The results about the existence of the potential
game, the existence and characterization of the stationary distribution and the relation with
the ERGM model can be extended to undirected networks with minimal modifications (see
Chandrasekhar and Jackson (2014)).26 Most of the asymptotic and convergence results in
the next section hold also for undirected networks (see Diaconis and Chatterjee (2011)).

Sparsity. The model generates dense networks, i.e. each player can potentially form all his
n − 1 links. This means that as n → ∞ the unconditional probability of a link does not
become vanishingly small (see Lovasz (2012)). Chandrasekhar and Jackson (2014) show that
assuming sparsity reduces the computational complexity of estimation and it implies good
statistical properties (e.g. consistency). In this model we can create sparsity with a simple

modification, i.e. a parameter θ
(n)
p → −∞ as n→∞.

3 Empirical Strategy

3.1 Computational Problem

Estimation and inference are complicated by the structure of the likelihood function, which
is known up to the normalizing constant (6), i.e. c (G, X, θ) =

∑
ω∈G

exp [Q (ω,X, θ)]. To com-

pute the latter constant at parameter vector θ for a network of n players, we would need to
sum over all 2n(n−1) possible network configurations the value of the potential function. For
example, for a small network of n = 10 players, there are 290 w 1027 network configurations.
A supercomputer that can compute 1012 potential functions in one second would take almost
40 million years to compute the constant.

26It is also possible to include binary actions (e.g. decision to smoke) into the model, as in Badev (2013).
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Therefore standard maximum likelihood maximization routines are impractical. A stan-
dard Bayesian estimation approach would encounter the same challenges. Let p (θ) be the
prior distribution, and let the likelihood function of the observed data (g,X) be the long-run
stationary distribution of the model π (g,X, θ). The posterior distribution of θ is

p (θ|g,X) =
π (g,X, θ) p (θ)∫

Θ
π (g,X, θ) p (θ) dθ

. (8)

Using a standard Metropolis-Hastings algorithm to sample from this posterior, we would
have to compute ratios

α (θ, θ′) = min

{
1,
p (θ′|g,X) qθ (θ|θ′)
p (θ|g,X) qθ (θ′|θ)

}
= min

{
1,

exp [Q (g,X, θ′)]

exp [Q (g,X, θ)]

c (G, X, θ)
c (G, X, θ′)

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

}
.

The issue is the computation of the likelihood ratios, which involve evaluation of the constant
that is infeasible.

3.2 Network simulations

This computational problem is common to many models in the statistical literature. The
usual approach is to provide an approximation of the normalizing constant and the likelihood,
using Markov Chain Monte Carlo simulation methods.27 For a fixed parameter value θ, the
algorithm simulates a Markov chain of networks whose unique invariant distribution is (5).

ALGORITHM 1 Metropolis-Hastings for Network Simulations
Fix a parameter vector θ. At iteration r, with current network gr

1. Propose a network g′ from a proposal distribution g′ ∼ qg (g′|gr)

2. Compute the Metropolis-Hastings ratio

αmh(gr, g
′) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(gr, X, θ)]

qg (gr|g′)
qg (g′|gr)

}
(9)

3. Update the network according to

gr+1 =

{
g′ with prob. αmh(gr, g

′)
gr with prob. 1− αmh(gr, g′)

(10)

27The algorithm used in this paper is similar to the Metropolis-Hastings algorithm proposed in Snijders
(2002).
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At each iteration of ALGORITHM 1 a random network g′ is proposed, and the update is
accepted with probability αmh(gr, g

′). The main advantage of this simulation strategy is that
the acceptance ratio αmh(gr, g

′) does not contain the normalizing constant c (G, X, θ) of the
stationary distribution. Each quantity in the acceptance ratio can be computed exactly. The
Metropolis-Hastings structure of the algorithm guarantees convergence. Standard results28

show that the chain generated by the algorithm converges uniformly to the likelihood of the
model.

The standard version of this algorithm is a local sampler : at each iteration, we select
a random player i with probability 1/n, we then select another player j with probability
1/(n− 1), and we update the link gij according to the Metropolis-Hastings ratio (9).

However, this algorithm has several practical convergence problems. To be concrete, let’s
implement the local sampler in a special case with homogeneous players, that includes only
direct utility and indirect utility.

πn(g;α, β) =
exp

{[
α
∑n

i=1

∑n
j=1 gij + β

∑n
i=1

∑n
j=1

∑n
k 6=i gijgjk

]}
c(α, β,Gn)

(11)

Figure 1: Network simulations at different parameter values
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Traceplots of simulations of model (11) using Algorithm 1 with local chains. The simulations are obtained
for a network with n = 100 players, with parameters α = −3 and β = {1/n, 3/n, 7/n} (Panel (A), (B)
and (C) respectively). Each simulation is started at 10 different starting networks, each corresponding to a
directed Erdos-Reny network with probability of link µ = {0, .111, .222, .333, .444, .555, .666, .777, .888, 1}.

We simulate this model using the local sampler just described. In Figure 1 we show
the trace plot of algorithm 1 for three different parameter vectors: α = −3 and β =
{1/n, 3/n, 7/n} (Panels (A), (B) and (C) respectively). We start the simulations at 10
different starting values, each corresponding to a directed Erdos-Renyi with probability of

28See Meyn and Tweedie (2009), Levin et al. (2008)
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link µ = {0, .111, .222, .333, .444, .555, .666, .777, .888, 1}. In the figures we show the link
density of each iteration.29 The network has n = 100 players.

The simulations (A) with parameters (α, β) = (−3, 1/n) converge to a very sparse net-
work; while the simulations (C) with parameters (α, β) = (−3, 7/n) converge to a very
dense network. On the other hand, when we consider simulations in (B) with parameters
(α, β) = (−3, 3/n), we observe that the chains started at relatively dense networks converge
to a very dense network with density of links µ2 ≈ 0.92, while chains started at relatively
sparse networks converge to a sparse network, with link density µ1 ≈ 0.07.

This is a phenomenon that practitioners have encountered in the ERGM literature and in
statistical physics models.30 The model seems to put very large probability mass on few net-
works, an issue called degeneracy. In the next section we provide several theoretical results
that explain the issue, and we propose a modification of the local sampler that decreases
this problem.

3.3 Large network analysis

There are two ways to study the asymptotic properties of empirical network formation mod-
els. First, we can consider a sample of independent networks and study the properties of the
model as the number of networks grows large (many networks asymptotics). Second, we can
consider a single network observation, and a sequence of graphs whose number of players n
grows large (large networks asymptotics). The former case is relatively standard and follows
from the theory of exponential families under usual regularity conditions.31 Identification of
the parameters is also standard.

The latter case of large networks is relatively more complicated, but has recently gained
attention in the literature.32 We provide a detailed asymptotic analysis of the model in the
homogeneous players case.33

Consider a sequence of directed graphs gn, where the number of nodes n → ∞ . To
consider such network limits, we re-scale the potential function, to avoid exploding terms
as n → ∞: each aggregate utility term is scaled by a factor nv(H), where v(H) is the num-
ber of vertices involved in the utility term. For example, if we consider the direct utility
of links, the building piece is a link gij and the corresponding aggregate term in the po-
tential function is

∑
i

∑
j gij, i.e. the total number of links. Each link can be interpreted

as a small network H1 including only 2 vertices, so v(H1) = 2 and we end up with a
rescaled statistics t(H1, g) = n−2

∑
i

∑
j gij. If we are considering the indirect utility term

H2 = gijgjk, we have v(H2) = 3 and we rescale the aggregate term in the potential by n3,

29The traceplot for the density of indirect links (the second network statistics) has similar pattern.
30See Snijders (2002), Butts (2009), Koskinen (2008) for examples.
31See Lehman (1983), Sheng (2012), Badev (2013).
32See Chandrasekhar and Jackson (2014), Graham (2014), Leung (2014a), DePaula et al. (2014) for recent

contributions.
33The explanation that follows is relatively informal, and we leave the technical details about graph limits,

large deviations and mean-field approximations in Appendix D.
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i.e. t(H2, g) = n−3
∑

i

∑
j

∑
k gijgjk . In summary

t(H1, g) =
1

n2

∑
i

∑
j

gij and t(H2, g) =
1

n3

∑
i

∑
j

∑
k

gijgjk

When n becomes large, it is convenient to consider the population of nodes as a continuum
interval [0, 1]; intuitively for large n the adjacency matrix is replaced by a function h :
[0, 1]2 → [0, 1] where h(x, y) indicates the probability that there is a directed edge from x to
y. The goal of the analysis is to characterize the behavior of the network statistics in the
limit n→∞. For the terms t(H1, g) and t(H2, g) we have

t(H1, g) → t(H1, h) ≡
∫

[0,1]2
h(x, y)dxdy

t(H2, g) → t(H2, h) ≡
∫

[0,1]3
h(x, y)h(y, z)dxdydz

From the re-scaled potential function T (g) we can derive the potential function corre-
sponding to the continuum of players T (h). If for a discrete n we have a re-scaled potential
T (g)

T (g) = αt(H1, g) + βt(H2, g) (12)

when n→∞, the potential function becomes

T (h) = αt(H1, h) + βt(H2, h)

The previous ideas can be generalized. The potential is essentially a weighted sum of P
aggregate utility terms that depend on subgraphs Hp of the network g. Each weight is a
parameter θp to estimate, so T (g) and T (h) are defined as

T (g) =
P∑
p=1

θpt(Hp, g) and T (h) =
P∑
p=1

θpt(Hp, h)

and each term t(Hp, h) is defined as

t(Hp, h) =

∫
[0,1]v(Hp)

∏
(i,j)∈E(Hp)

h(xi, xj)dx1 · · · dxv(Hp)

where E(Hp) indicates the set of links included in the subgraph Hp. We can re-scale the
potential of the model (11) with direct utility and indirect utility, to get the probability of
observing g in the stationary equilibrium as

πn(g;α, β) =
exp

{
n2
[
α

∑n
i=1

∑n
j=1 gij

n2 + β
∑n
i=1

∑n
j=1

∑n
k 6=i gijgjk

n3

]}
c(α, β,Gn)

=
exp {n2 [αt(H1, g) + βt(H2, g)]}

c(α, β,Gn)
= exp

{
n2 [T (g)− ψn]

}
(13)
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where the constant ψn is defined as

ψn =
1

n2
log
∑
g∈Gn

exp
[
n2T (g)

]
(14)

Notice that the above model is equivalent to the original model (11) with parameter β
re-scaled by n.34 Let the entropy of the probability density h(x, y) be denoted as I(h)

I(h) ≡
∫ 1

0

∫ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy (15)

The following theorem provides an asymptotic estimate of the normalizing constant, as the
solution of a variational problem. This result extend the analogous result for undirected
network provided in Diaconis and Chatterjee (2011).35

THEOREM 2 (Asymptotic constant). If T : W → R is a bounded continuous function
and ψn and I are defined as in (14) and (15) respectively, then

ψ ≡ lim
n→∞

ψn = sup
h∈W
{T (h)− I(h)} (16)

Proof. See Theorem 10 in Appendix D

The result in the theorem provides a consistent estimator for the log of the normalizing
constant. This formulation is the asymptotic analogous of the variational representation
of the discrete exponential family in mean parameterization, as shown in Wainwright and
Jordan (2008). In general, the variational problem in (16) does not have a closed-form
solution, but there are special cases in which the problem becomes tractable.

Using the characterization in Theorem 2, we can provide precise results about identifica-
tion and convergence of the algorithms, for the special case of homogenous players and no
covariates.36

THEOREM 3 The model (13) has the following asymptotic behavior:

1. If β ≥ 0, then the networks generated by the model are indistinguishable from a directed
Erdos-Renyi graph with linking probability µ∗ that solves

µ =
exp [α + 2βµ]

1 + exp [α + 2βµ]
(17)

and satisfy 2βµ(1− µ) < 1, for almost all α ∈ R and β ≥ 0.

34This is important when we run the simulations using the usual ERGM form. For example, we need to
use βo = β

n for simulations using the ergm package in the software R. The same is true for the replication
routines of this paper.

35The extension to directed networks is not trivial, since the regularity conditions used by Diaconis and
Chatterjee (2011) to guaranteed compactness of the space of graphons do not work in the directed case
network. In addition, in directed networks the existence of homomorphisms is not guaranteed. See Appendix
D for the technical details.

36We use the approach developed in Radin and Yin (2013) and Aristoff and Zhu (2014) to study the
maximization problem implied by the simplified variational problem.
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2. If β ≥ 0 there exists a continuous and monotone decreasing function ζ : (−∞,−2] →
[2,∞], such that for any α < −2, if β = ζ(α), the model generated graph is asymp-
totically indistinguishable from a mixture of directed Erdos-Renyi graphs with linking
probabilities µ∗1 and µ∗2, such that µ∗1 < 0.5 < µ∗2 and both solve equation (17) and
satisfy 2βµ(1− µ) < 1.

3. Let β ≥ 0. Then there exist two functions S(φ1(α)) and S(φ2(α)) that delimit a V-
shaped region of the parameters (α, β). If β ∈ (S(φ2(α)), S(φ1(α))) the variational
problem (16) has two local maximizers, that correspond to directed Erdos-Renyi graphs
with linking probability µ∗1 and µ∗2, such that µ∗1 < 0.5 < µ∗2 and both solve equation (17)
and satisfy 2βµ(1 − µ) < 1. If β ∈ (S(φ2(α)), ζ(α)) then µ∗1 is the global maximizer.
If β ∈ (ζ(α), S(φ1(α))) then µ∗2 is the global maximizer.

4. If β < 0, then for any α ∈ R there exists a positive constant C(α) > 0, such that for
β < −C(α) the model is asymptotically different from a directed Erdos-Renyi model.

Proof. The first, second and third part follow from Theorem 11 and Theorem 19 in
Appendix D. The third part is proven in Theorem 14 in Appendix D.

In Figure 2(A) we provide a visualization of the regions described in Theorem 3. The
functions S(φ1(α)) and S(φ2(α)) delimit a V-shaped region, which contains the function
ζ(α). The functions φ1 and φ2 are defined in the proof of Theorem 11 in Appendix D.

The first part of Theorem 3 shows that identifcation can fail as n→∞, in a model with
positive externalities. If β > 0, a realization of the model with parameters (α, β) such that
β 6= ζ(α), will be indistinguishable from the realization of a model with parameters (α′, 0)
where α′ = log µ∗

1−µ∗ and µ∗ is the unique solution of equation (17).37

The second part shows that along the function β = ζ(α) the model behaves as a mixture
of Erdos-Renyi graphs for large population. This is also an identification problem. In
particular, the parameters (α, ζ(α)) can generate two completely different networks, one
with link density µ∗1 < 0.5 and one with link density µ∗2 > 0.5.38 Such problem was observed
by practitioners (see Snijders (2002) for example) using simulation methods, and it was
proven analytically for undirected networks in Diaconis and Chatterjee (2011). We extend
their result to directed networks.

The third statement shows that when the parameters belong to the V-shaped region
delimited by S(φ1(α)) and S(φ2(α)), we have two local maximizers of (16), but only one
of them is global. If the externality is small enough (i.e. β ∈ (S(φ2(α)), ζ(α))), the global
maximizer corresponds to a relatively sparse network; if the externality is large enough (i.e.
β ∈ (ζ(α), S(φ1(α)))) the corresponding global maximizer is relatively dense.

37The model with homogeneous players and only positive externalities violates the condition of expectation-
identification in Chandrasekhar and Jackson (2014). The condition requires that different parameters cor-
respond to different expected network statistics. This is clearly violated in this special case.

38In the applied mathematics and physics literature, such sets of parameters are crucial because they
generate a phase transition. See for example Radin and Yin (2013).
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Figure 2: Visualization of the regions described in Theorem 3
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Panel (A) shows the functions ζ(α), S(φ1(α)) and S(φ2(α)) described in Theorem 3. Panel (B) shows how the V-shaped region
delimited by S(φ1(α)) and S(φ2(α)) change if we consider the model with direct utility and only one externality, i.e. a model
with two parameters only. Here r defines the order of interdependencies of the second utility term (the externality): r = 2
corresponds to the original model in Theorem 3; r = 3 correspond to a model with direct links utility and utility from common
connections (cyclic triangles); r = 4 corresponds to a model with direct links utility and utility from 4 common connections
(e.g. 4-cycle). If we increase the order of dependencies the region increases. This is crucial for the discussion about convergence
of the algorithms. The derivations and additional utility terms are considered in Appendix D.

The fourth statement provides sufficient conditions that guarantee the model does not
converge to a trivial network with independent links. The problem of asymptotic identifica-
tion is generated by positive externalities: a model with sufficiently large negative externali-
ties generates graphs that do not converge asymptotically to directed Erdos-Renyi networks.
In other words, the constant function h(x, y) = µ is not a solution of the variational problem
(16) when β < 0 and sufficiently large in magnitude.

Figure 2(B) shows how the V-shaped region delimited by S(φ1(α)) and S(φ2(α)) change
if we consider alternative externalities to the term t(H2, g). In the figure, r defines the order
of interdependencies of the second utility term (the externality): r = 2 corresponds to the
original model in Theorem 3; r = 3 correspond to a model with direct links utility and utility
from common connections (cyclic triangles), i.e. t(H2, g) = n−3

∑
i

∑
j

∑
k gijgjkgki ; r = 4

corresponds to a model with direct links utility and externality from 4 connections, e.g. 4-
cycle with t(H2, g) = n−4

∑
i

∑
j

∑
k

∑
l gijgjkgklgli. The general result is that if we increase

the order of dependencies the size of the V-shaped region increases. We show below that
this V-shaped region is related to the convergence problems of the algorithm for networks
simulations. The derivations and analysis with several alternative utility terms are provided
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in Appendix D.

Figure 3: Model with negative externalities does not converge to Erdos-Renyi graphs
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The 4 panels compare simulations of model (13) with parameters (α, β) = (5,−10) with correspoding Erdos-Renyi model with

same direct link density. The network has n = 300 players, and we run the simulation for 1500000 iterations, sampling every

150 iterations. In Panel (A) we show the convergence of the direct links density to µ = 0.3302742 for model model (13). In

Panel (B) we simulate the corresponding Erdos-Renyi model with parameter α = log µ
1−µ . If model (13) with parameters

(α, β) = (5,−10) converges to an Erdos-Renyi model, then the density of indirect links should be µ2 = 0.109081, shown as the

horizontal dashed line in Panel (C): this shows that the model is different from a trivial Erdos-Renyi model with independent

direct links. The simulations for the correspoding Erdos-Renyi model are in Panel (D), showing convergence to µ2.

The simulations in Figure 3 show evidence that the model with β < 0 does not converge to
an Erdos-Renyi model in the large n limit. We start the simulations at 10 different starting
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values, corresponding to Erdos-Renyi graphs with probability of linking µ equi-spaced on
the unit interval, for a network of size n = 300.39 In Figure 3(A) we report simulations for
(α, β) = (5,−10), which converge to a network density of µ = 0.3302742. Figure 3(B) shows
the simulations of the corresponding Erdos-Renyi model with parameter α′ = log µ

1−µ . If

the model with (α, β) = (5,−10) converges to an Erdos-Renyi graph, then the density of
indirect links should be µ2 = 0.109081. Figure 3(C) and (D) prove that this is not the case.
Indeed in Figure 3(C) our model converges to a different density of indirect links, smaller
than the corresponding Erdos-Renyi indirect link density in Figure 3(D). Figure 3(B) and
(D) are shown to prove that this is not an artifact of the simulations or the sampler.

The result in Theorem 3 applies to more general models. Indeed, if we augment model
(13) to include the effect of common links, i.e. cyclic triangles, we obtain a rescaled potential

T (g) = αt(H1, g) + βt(H2, g) + γt(H3, g) (18)

where the network statistics t(H1, g) and t(H2, g) are the same as in model (13) and
t(H3, g) = n−3

∑n
i=1

∑n
j=1

∑n
k 6=i gijgjkgki. For such model we can provide a similar charac-

terization of the asymptotic behavior.

THEOREM 4 Let µ0 be (uniquely) determined by

6γ =
2µ0 − 1

µ2
0(1− µ0)2

and let α0 and β0 be defined as follows:

β0 =
1

2µ0(1− µ0)
− 3γµ0 and α0 = log

µ0

1− µ0

− 1

(1− µ0)
+

2µ0 − 1

2(1− µ0)2

Then model (18) has the following asymptotic behavior.

1. If β ≥ 0 and γ ≥ 0, then the networks generated by the model are indistinguishable
from a directed Erdos-Renyi graph with linking probability µ∗ that solves the following
equation

µ =
exp [α + 2βµ+ 3γµ2]

1 + exp [α + 2βµ+ 3γµ2]
(19)

and satisfy (2βµ+ 6γµ2) (1− µ) < 1, for almost all α ∈ R, β ≥ 0 and γ ≥ 0.

2. If β > 0, for any γ > 0, there exists a continuous and monotone decreasing function
ζγ : (−∞, α0] → [β0,∞], such that for any α < α0, if β = ζγ(α) > max {0, β0}, the
model generated graph is asymptotically indistinguishable from a mixture of directed
Erdos-Renyi graphs with linking probabilities µ∗1 and µ∗2, such that µ∗1 < 0.5 < µ∗2 and
both solve equation (19) and satisfy (2βµ+ 6γµ2) (1− µ) < 1.

39The theoretical results approximate networks of size n > 50 quite well.
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3. If β > 0, for any γ > 0 there exist two functions Sγ(φ1(α)) and Sγ(φ2(α)) that delimit a
V-shaped region of the parameters (α, β). If β ∈ (Sγ(φ2(α)), Sγ(φ1(α))) the variational
problem (16) has two local maximizers, that correspond to directed Erdos-Renyi graphs
with linking probability µ∗1 and µ∗2, such that µ∗1 < 0.5 < µ∗2 and both solve equation (17)
and satisfy 2βµ(1− µ) < 1. If β ∈ (Sγ(φ2(α)), ζγ(α)) then µ∗1 is the global maximizer.
If β ∈ (ζγ(α), Sγ(φ1(α))) then µ∗2 is the global maximizer.

4. If β < 0, then for any α ∈ R and γ ≥ 0 there exists a positive constant C(α, γ) > 0,
such that for β < −C(α, γ) the model is asymptotically different from a directed Erdos-
Renyi model. Analogously, if γ < 0, then for any α ∈ R and β ≥ 0 there exists a
positive constant C(α, β) > 0, such that for γ < −C(α, β) the model is asymptotically
different from a directed Erdos-Renyi model.

Proof. The first, second and third statements follow from Theorem 12, Theorem 17 and
Theorem 18 in Appendix D. The fourth statement is proven in Theorem 16 in Appendix D.

The theorem confirms the identification problem for models with only positive external-
ities. The last part of the theorem shows that this problem does not arise when at least
one of the externalities is negative and sufficiently large. The generalization to additional
externalities with alternative utility subgraphs is straightforward, but tedious.40

The main lesson from this analysis is that models with homogeneous players including
only positive externalities converge asymptotically to trivial Erdos-Renyi models and are
essentially ill-identified in the large n limit. However, as long as at least one externality
is negative, the model does not degenerate into a trivial independent-links model. This is
important, because when we have homophily in indirect links, some linking decision will
generate negative externalities for some players. While we were not able to prove similar
results for the more general model with heterogeneous players,41 we conjecture that the sign
of the linking externalities is crucial for identification in these class of models.

3.4 Convergence of network simulations

The graphs in Figure 1 show that network simulations with a local sampler may have con-
vergence issues. Furthermore, the work of Bhamidi et al. (2011) provides conditions under
which the simulations are infeasible, focusing on the undirected version of the exponential
random graph model. While a general characterization of convergence is not tractable, it is
possible to provide exact bounds for the special case with only positive externalities, follow-
ing the same approach of Bhamidi et al. (2011). Consider our basic model with a meeting
technology such that in each period a player i is selected with probability 1/n, and meets an
agent j with probability 1/(n − 1). This model behaves as a random scan Gibbs sampler,
and it is a local Markov chain, because it updates one link per iteration. More generally a
chain is local if it updates only o(n) links per iteration.

40Examples of additional externalities are shown in Appendix D.
41We are not aware of any result in the literature on graph limits that allows for covariates.
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In this special case and for non-negative externalities, we can provide exact bounds to
the number of iterations necessary to couple a Markov chain started at the empty network
with one started at the full network.

THEOREM 5 Consider the same model as in Theorem 4, with probability of meeting ρij =
1/(n(n− 1)). Let µ0, α0, β0, Sγ(φ1(α)) and Sγ(φ2(α)) be defined as in Theorem 4. Fix any
γ ≥ 0. Then, for any β ≥ 0

1. If β ∈ [Sγ(φ2(α)), Sγ(φ1(α))], the model converges to stationarity in eCn
2

steps, where
C > 0 is a constant. This result extends to any local chain.

2. If β /∈ [Sγ(φ2(α)), Sγ(φ1(α))], the model converges to stationarity in Cn2 log n steps,
where C > 0 is a constant.

Proof. Follows from Theorem 4 above, and Theorems 5 and 6 in Bhamidi et al. (2011)

If we use a local sampler to simulate networks from the stationary distribution, we are
not able to run the simulations to stationarity if parameters belong to the V-shaped region
in Figure 4, delimited by functions S(φ1(α)) and S(φ2(α)). This happens because in that
region, the stationary distribution has two local maxima and the chain may get trapped in
one of them. Thus convergence is in exponential time, because once close to one of the local
modes, the chain has probability e−Cn

2
to reach the other mode.

It is trivial to show that an increase in γ would increase α0 and decrease β0, thus increasing
the area of exponentially slow convergence. For a visualization see proof of Theorem 17 in
Appendix D.

When the convergence is in quadratic time (i.e. in order n2 log n steps), the sampler is
feasible for moderate size networks (n < 500). However, if we superimpose the statements of
Theorem 5 with the previous Theorem 4 we realize that the region of quadratic convergence
corresponds to regions in which the model behaves asymptotically as an Erdos-Renyi model.
Therefore the sampler can be simplified drastically to simulate the model as a matrix of
Bernoulli variables. This provides a good benchmark to check if alternative simulation
strategies are correct.

The results on convergence and identification raise also another concern. In Figure 4 we
highlight the V-shaped area of slow convergence, delimited by the functions Sγ(φ1(α)) and
S(φ2(α)). Let’s focus on the area below ζγ(α), in green. When the parameters belong to this
area, the model is asymptotically equivalent to a directed Erdos-Renyi graph with probability
of linking µ∗1 < 0.5. However, as stated in Theorem 4 (part 3), for each combination of (α, β)
there are two local maxima of the variational problem in this area, µ∗1 < 0.5 < µ∗2, which
correspond to the two local modes of the stationary distribution. If we start the sampler
from a very sparse graph (e.g. the empty network), it will converge to µ∗1 in quadratic time.
However, if we start the sampler at a very dense graph (e.g. the complete network), it will
converge to µ∗2 in quadratic time, getting trapped in the local maximum of the variational
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Figure 4: Regions of fast and slow convergence, for given γ
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The figure shows the V-shaped region of exponentially slow convergence for a local sampler. In this region, the variational
problem (16) has two local solutions and the local sampler can get trapped in the local maximum, without ever visiting the
global maximum.

problem. It can be shown that the probability of escaping the local maximum is of order
e−Cn

2
(see proofs of Theorem 5 and 6 in Bhamidi et al. (2011)), which is essentially zero.

Analogously, if we consider the region above ζγ(α) and below Sγ(φ1(α)), there are two local
maximizers of the variational problem, µ∗1 < 0.5 < µ∗2 for each combination of (α, β), and µ∗2
is the global maximizer. If we start the sampler from a very sparse graph (e.g. the empty
network), it will converge to µ∗1 in quadratic time. If we start the sampler at a very dense
graph (e.g. the complete network), it will converge to µ∗2 in quadratic time, getting trapped
in the local maximum of the variational problem.

Therefore, for any γ > 0, at any combination of (α, β) inside the V-shaped region delim-
ited by the functions Sγ(φ1(α)) and S(φ2(α)), our local sampler could fail to converge to the
correct asymptotic network density.

A non-local sampler.
The previous theoretical results indicate the local chain property of the sampler creates
convergence problems. We can this modify our sampler to take this analysis into account.
Essentially the modification allows the sampler to make larger steps, in particular steps that
are not o(n). The local chain selects a link gij with probability 1/(n(n − 1)), proposing to
swap the value to 1− gij.

The modified algorithm, has several large steps. First, with probability pr, the sampler
selects a player i at random (with probability 1/n) and proposes to swap all his links, i.e.
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gij = 1 − gij for each j = 1, ..., n. Second, with probability pc, the sampler selects a player
i at random (with probability 1/n) and proposes to swap all the links pointing at i, i.e.
gji = 1− gji for each j = 1, ..., n. Third, with probability pf , the sampler selects uniformly
at random dλne links, where λ ∈ (0, 1), and proposes to swap all of them. Notice that this
step size is a function of n, and in particular is not o(n). The crucial ingredient is to make
the length of the step a function of n. The parameter λ is under control of the researcher:
higher values allow larger steps and increase the computational cost of sampling. Lastly,
with probability pinv the sampler proposes to invert the adjacency matrix. The goal of this
large step is to provide a way to jump across modes of the stationary distribution, when it
is bimodal. 42

Using this sampler, we reproduce the simulation in Figure 1. We know that the local
chain can get trapped in local maxima of the variational problem. If we simulate model (13)
with parameters (α, β) = (−3, 3), we obtain Figure 5(A). While Theorem 3 states that the
simulations should converge to the sparse network density µ1 ≈ 0.07, we observe that the
local sampler converges to a dense network with µ2 ≈ 0.93, if started at dense networks.
In other words, when started at a dense network (say the full network), the sampler gets
trapped in a local maximum of the variational problem, with density µ2 ≈ 0.93. Figure 5(B)
shows that our modified sampler does not have this problem, and also the chains started at
dense network converge to the correct (sparse) network density. This simple modification
gets rid of the exponentially slow convergence of the local algorithm. More generally, these
large steps allow the sampler to escape local maxima of the potential function.

3.5 Posterior Estimation

We estimate the posterior distribution of the structural parameters using an approximate
version of the exchange algorithm (see Murray et al. (2006)). The approximate algorithm
uses a double Metropolis-Hastings step to avoid the computation of the normalizing constant
c (G, X, θ) in the likelihood, as in Liang (2010).43 Several authors have proposed similar al-
gorithms in the related literature on Exponential Random Graphs Models (ERGM).44

The idea of the algorithm is to sample from an augmented distribution using an auxiliary
variable. At each iteration, the algorithm proposes a new parameter vector θ′, drawn from a

42We have seen that this is the case in the homogeneous player case, for many parameter values.
43This improvement comes with a possible cost: the algorithm may produce MCMC chains of parameters

that have very poor mixing properties (Caimo and Friel, 2010) and high autocorrelation. We partially correct
for this problem by carefully calibrating the proposal distribution. In this paper we use a random walk
proposal. Alternatively one could update the parameters in blocks or use recent random block techniques
as in Chib and Ramamurthy (2009) to improve convergence and mixing.

44Caimo and Friel (2010) use the exchange algorithm to estimate ERGM. They improve the mixing of
the sampler using the snooker algorithm. Koskinen (2008) proposes the Linked Importance Sampler Aux-
iliary variable (LISA) algorithm, which uses importance sampling to provide an estimate of the acceptance
probability. Another variation of the algorithm is used in Liang (2010).
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Figure 5: Local sampler versus Modified sampler
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Comparison of network samplers for model (13), with parameters (α, β) = (−3, 3). Panel (A) shows the simulation using the

local-chain sampler, which converges to two different link densities (µ1 ≈ 0.07 and µ2 ≈ 0.93). However, we know from Theorem

3, that the correct simulation should converge to the sparse network density. So the local chain fails to sample correctly if we

start it at a dense network, because it gets trapped at a local maximum of the stationary distribution. Panel (B) shows the

simulation using the modified algorithm. We use pr = pf = pinv = 0.01. The simulations converge to the correct link density

for any starting value, therefore our modified algorithm provides a better sampler for the model.

suitable proposal distribution qθ(θ
′|θ); in the second step, it samples a network g′ (the aux-

iliary variable) from the likelihood π (g′, X, θ′); finally, the proposed parameter is accepted
with a probability αex(θ, θ

′), such that the Markov chain of parameters generated by these
update rules, has the posterior (8) as unique invariant distribution.

The result in Lemma 1 in Appendix B shows that choosing the observed network as
initial network for the simulations guarantees that the approximate and the exact exchange
algorithm have the same acceptance ratio, for any length R of the network simulations.
Therefore, the proof of convergence to the correct posterior only needs to show the con-
vergence of the proposal distribution, i.e. convergence of the network simulations to the
stationary equilibrium of the model (see details in Appendix B).

ALGORITHM 2 (APPROXIMATE EXCHANGE ALGORITHM)
Fix the number of simulations R. At each iteration t, with current parameter θt = θ and
network data g:
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1. Propose a new parameter θ′ from a distribution qθ(·|θ),

θ′ ∼ qθ(·|θ). (20)

2. Start ALGORITHM 1 at the observed network g, iterating for R steps using param-
eter θ′ and collect the last simulated network g′

g′ ∼ P(R)
θ′ (g′|g). (21)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

where

αex(θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
. (22)

The main advantage of this algorithm is that all quantities in the acceptance ratio (22)
can be evaluated: there are no integrals or normalizing constants to compute. This simple
modification of the original Metropolis-Hastings scheme makes estimation feasible.

The sampler is likely to accept proposals that move towards high density regions of the
posterior, but it is likely to reject proposals that move towards low density regions of the
posterior. The formal statement about convergence is contained in the following theorem.

THEOREM 6 (Ergodicity of the Approximate Exchange Algorithm). The approximate
exchange algorithm is ergodic, and it converges to the correct posterior distribution.

1. (Convergence)) Let P̃
(s)
R (θ0, ·) be the s-th step transition of the approximate ex-

change algorithm, when the auxiliary network is sampled using R steps of the network
simulation algorithm and the initial parameter of the simulation is θ0. Let ‖·‖TV be
the total variation distance and p (·|g,X) the posterior distribution.
Then, for any ε > 0 there exist R0 ∈ N and S0 ∈ N such that for any R > R0 and
s > S0 and any initial parameter vector θ0 ∈ Θ∥∥∥P̃ (s)

R (θ0, ·)− p (·|g,X)
∥∥∥
TV
≤ ε (23)

2. (WLLN) A Weak Law of Large Numbers holds: for any initial parameter vector θ0 ∈ Θ
and any bounded integrable function h(·)

1

S

S∑
s=1

h (θs)
P−→
∫

Θ

h (θ) p (θ|g,X) dθ (24)
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Proof. In Appendix B.

The theorem states that the algorithm produces good samples as long as the number of steps
of the network simulation algorithm is big enough and the algorithm is run for a sufficient
number of iterations.

In general, for a fixed number of network simulations R, the samples generated by the
algorithm will converge to a posterior that is ”close” to the correct posterior. As R → ∞
the algorithm converges to the exact exchange algorithm of Murray et al. (2006), producing
exact samples from the posterior distribution. However, an higher value of R would increase
the computational cost and result in a higher rejection rate for the proposed parameters.
The results in the next section provide some practical guidance on setting a suitable R,
without compromising computational efficiency.

4 Simulation results

The performance of the estimation method is tested using artificial data. All the compu-
tations with artificial data are performed in a standard desktop Dell Precision T7620 with
2 Intel Xeon CPUs E5-2697 v2 with 12 Dual core processors at 2.7GHZ each and 64GB
of RAM. For replication purposes, there is a package in Github at https://github.com/

meleangelo/netnew.45

Ideally, we want to compare the results of the approximate exchange algorithm with the
exact algorithm. This is feasible for a special case, where preferences depend only on direct
and mutual links (i.e. excluding friends of friends and popularity effects).

Q(g, α, β) = α
n∑
i=1

n∑
j=1

gij + β
n∑
i=1

n∑
j>i1

gijgji (25)

For this model, described by equation (25), we can show that the constant is

c(θ) =
(
1 + 2eα + e2α+β

)n(n−1)
2

thus we can compute the exact likelihood and we can perform inference using the exact
Metropolis-Hastings sampler. We then compare the results of the exact algorithm with the
approximate exchange algorithm.

The results of the simulations are shown in Table 1. The data were generated by
parameters (α, β) = (−2.0, 0.5). The number of network simulations per each proposed
parameter are R = {1000, 5000, 10000, 50000, 100000, 1000000, 10000000}. We run each
algorithm for S = 10000 parameters iterations, and we use the output to measure the

45In all estimation exercises we use independent normal priors N (0, 10). The proposal of the exchange
algorithm is a random walk N (0,Σ). We repeat the estimation twice: the first time we use a diagonal Σ; in
the second round, we use the covariance from the first round as baseline. In all simulations the probability
of large steps is 0.001 and a large step updates 0.1n links.
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Kolmogorov-Smirnov distance and the Kullback-Leibler divergence between the posterior
estimated with the exact metropolis sampler p(θ|g,X) and the posterior estimated with the
approximated algorithm with R network simulations pR(θ|g,X)

KS = sup
θi∈Θi

∣∣∣∣∫ θi

−∞
pR(θi|g,X)−

∫ θi

−∞
p(θi|g,X)

∣∣∣∣
KL =

∫
Θi

log

[
pR(θi|g,X)

p(θi|g,X)

]
pR(θi|g,X)dθi

The table reports posterior mean, median, standard deviation, Monte Carlo standard er-
rors for the posterior mean (mcse), 95% credibility intervals, Kolmogorov-Smirnov statistics,
Kullback-Leibler divergence and time for computation.

The exact Metropolis-Hastings is reported in the first column of the table. The ap-
proximate exchange algorithm works very well for small to moderate networks. For a small
network with n = 100 players, a reasonable degree of accuracy can be reached with as low
as R = 5000 network simulations per parameter. Simulations from over-dispersed starting
values converge to the same posterior distribution. Convergence is quite fast to the high
density region of the posterior.46

Let’s now consider a model with homogeneous players where there is no utility from
reciprocated links, but only from indirect connections and popularity, i.e.

Q(g, α, β) = α
n∑
i=1

n∑
j=1

gij + β
n∑
i=1

n∑
j=1

n∑
k=1

gijgjk (26)

The estimated parameters for this model are shown in Table 2 and 3. We generate the
network data using different parameter vectors. The first panel correspond to parame-
ters (α, β) = (−3, 1/n). This is a model that generates a sparse network and the likeli-
hood has a unique mode. The second panel shows estimates for a model with parameters
(α, β) = (−3, 3/n), with a variational problem with two local solutions that generates prob-
lems of convergence with a local sampler. The last panel is a model with negative externalities
(α, β) = (5,−10/n) that does not converge to an Erdos-Renyi model. We also simulated a
model with parameters (α, β) = (−3, 7/n). However, if we solve the variational problem with
these parameters, we can show that the solution is an Erdos-Renyi model with probability
of linking µ∗ = 1, i.e. the full network. Therefore a model with parameters α = −3, for any
β > 7/n would also generate a full network. Any attempt to estimate β with data consisting
of a full network is futile.

The estimates using the non-local sampler are precise for a moderate amount of network
simulations. Clearly, estimates in Table 2 are less precise than the ones in Table 3, since the
number of links is smaller. Because of our modified network sampler, there is no need to

46This result is common with the class of exchange algorithms. See Caimo and Friel (2010), Atchade and
Wang (forthcoming) for examples. Computations can be faster if we embed sparse matrix algebra routines
in the codes. The results in Table 1 are obtained with codes that do no use sparse matrix algebra, thus
representing a worst case scenario in computational time.
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Table 2: Estimated structural parameters for model (26), n = 100
true parameters (α, β) = (−3, 0.01)

n = 100 R = 1000 R = 10000 R = 100000 R = 1000000
true = (−3, .01) α β α β α β α β
mean -2.7450 -0.0233 -2.9095 -0.0035 -2.9407 -0.0009 -2.9206 -0.0025
median -2.7575 -0.0185 -2.9171 -0.0021 -2.9498 0.0003 -2.9288 -0.0014
std. dev. 0.4782 0.0460 0.2032 0.0201 0.1860 0.0183 0.1916 0.0189
mcse 0.0975 0.0010 0.0111 0.0001 0.0094 0.0001 0.0104 0.0001
pctile 2.5% -3.6862 -0.1208 -3.2660 -0.0462 -3.2614 -0.0400 -3.2468 -0.0412
pctile 97.5% -1.7789 0.0545 -2.4916 0.0305 -2.5452 0.0303 -2.5158 0.0297
time (secs) 25.3800 236.2100 2485.5200 24658.1500

true parameters (α, β) = (−3, 0.03)
n = 100 R = 1000 R = 10000 R = 100000 R = 1000000
true = (−3, 0.03) α β α β α β α β
mean -2.6075 0.0002 -2.7578 0.0124 -2.7618 0.0126 -2.7720 0.0134
median -2.6425 0.0036 -2.7804 0.0140 -2.7812 0.0140 -2.7917 0.0148
std.dev. 0.4396 0.0306 0.1757 0.0122 0.1663 0.0116 0.1671 0.0116
mcse 0.0819 0.0004 0.0075 0.0000 0.0073 0.0000 0.0080 0.0000
pctile 2.5% -3.4144 -0.0682 -3.0320 -0.0150 -3.0185 -0.0132 -3.0165 -0.0129
pctile 97.5% -1.6856 0.0526 -2.3671 0.0299 -2.4054 0.0299 -2.3897 0.0297
time (secs) 27.3900 256.2500 2647.7600 26277.7000

true parameters (α, β) = (5,−0.1)
n = 100 R=1000 R=10000 R=100000 R=1000000
true = (5,−0.1) α β α β α β α β
mean 4.8397 -0.0964 4.8722 -0.0968 4.8743 -0.0968 4.8856 -0.0970
median 4.8265 -0.0963 4.8674 -0.0968 4.8682 -0.0968 4.8846 -0.0970
std. dev. 0.4031 0.0067 0.1550 0.0026 0.1188 0.0018 0.1137 0.0018
mcse 0.0427 0.0000 0.0064 0.0000 0.0041 0.0000 0.0039 0.0000
pctile 2.5% 4.0677 -0.1101 4.5688 -0.1020 4.6493 -0.1005 4.6645 -0.1006
pctile 97.5% 5.6615 -0.0836 5.1707 -0.0920 5.1202 -0.0933 5.1156 -0.0936
time (secs) 49.3300 433.5100 4254.5800 41218.3700

have a large number of network simulations. The reason is that the non-local sampler can
jump quickly to the correct mode(s) of the likelihood: once it reaches an area close to the
global maximum, convergence is in quadratic time, since it will reject jumps to local maxima
of the variational problem that are not global maxima. While the number of iterations may
be lower, the computational time of each iteration is higher, because the large steps are com-
putationally expensive. In Table 2, the precision gain from additional network simulations
is negligible when R > 10000. Notice that the computational time is higher for the model
with negative externality. The reason is that the equilibrium network generated at the true
parameters (α, β) = (5,−10/n) is denser than the ones in the previous panels, and therefore
the large steps are more computationally expensive than for the other two models.

In the next table we consider a model where players are homogeneous and they receive
utility from direct links, reciprocated links, indirect links and popularity. The potential
function of such model is defined as

Q(g, α, β, γ) = α

n∑
i=1

n∑
j=1

gij + β

n∑
i=1

n∑
j>i

gijgji + γ

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk (27)

32



Table 3: Estimated structural parameters for model (26), n = 200
true parameters (α, β) = (−3, 0.005)

n = 200 R = 1000 R = 10000 R = 100000 R = 1000000
true = (−3, .005) α β α β α β α β
mean -2.6694 -0.0112 -2.9707 0.0042 -3.0529 0.0083 -3.0603 0.0086
median -2.7045 -0.0086 -2.9972 0.0056 -3.0675 0.0089 -3.0784 0.0095
std. dev. 0.5631 0.0254 0.1841 0.0083 0.1137 0.0053 0.1113 0.0052
mcse 0.1341 0.0003 0.0089 0.0000 0.0035 0.0000 0.0032 0.0000
pctile 2.5% -3.7109 -0.0665 -3.2574 -0.0148 -3.2202 -0.0035 -3.2244 -0.0036
pctile 97.5% -1.5002 0.0332 -2.5689 0.0159 -2.8044 0.0159 -2.8007 0.0158
time (secs) 173.7800 1651.4400 16248.9400 149962.1800

true parameters (α, β) = (−3, 0.015)
n = 200 R = 1000 R = 10000 R = 100000 R = 1000000
true = (−3, 0.015) α β α β α β α β
mean -2.4770 -0.0033 -2.7773 0.0075 -2.8601 0.0104 -2.8518 0.0101
median -2.5002 -0.0019 -2.8042 0.0083 -2.8785 0.0111 -2.8703 0.0108
std. dev. 0.5828 0.0200 0.1627 0.0055 0.1012 0.0035 0.1028 0.0035
mcse 0.1012 0.0001 0.0078 0.0000 0.0028 0.0000 0.0028 0.0000
pctile 2.5% -3.6184 -0.0474 -3.0206 -0.0054 -3.0026 0.0024 -2.9961 0.0020
pctile 97.5% -1.2515 0.0346 -2.4080 0.0148 -2.6267 0.0150 -2.6149 0.0149
time (secs) 190.5800 1783.1900 17496.5900 161462.5300

true parameters (α, β) = (5,−0.05)
n = 200 R=1000 R=10000 R=100000 R=1000000
true = (5,−0.05) α β α β α β α β
mean 5.0734 -0.0504 5.0782 -0.0503 5.0528 -0.0501 5.0477 -0.0501
median 5.0475 -0.0502 5.0718 -0.0503 5.0539 -0.0501 5.0478 -0.0501
std. dev. 0.4791 0.0039 0.1535 0.0012 0.0713 0.0005 0.0644 0.0005
mcse 0.0765 0.0000 0.0068 0.0000 0.0017 0.0000 0.0011 0.0000
pctile 2.5% 4.1775 -0.0587 4.7926 -0.0529 4.9129 -0.0512 4.9220 -0.0511
pctile 97.5% 6.0765 -0.0431 5.3987 -0.0480 5.1904 -0.0490 5.1781 -0.0491
time (secs) 361.5600 2996.3300 29001.6900 257572.3700

The data are generated by parameters (α, β, γ) = (−2.00, 0.50, 0.01). The pattern of Table
4 is similar to the previous analysis: the increase in precision for R > 10000 is minimal with
respect to the increased cost of sampling networks.

Finally, we estimate a simple model with heterogeneous players. There is only one binary
covariate X and the players receive utility from direct links, and indirect links and popularity.
The covariate is generated as a Bernoulli variable with P (Xi = 1) = 0.3. The utility from
indirect links/popularity is positive if both i and k belong to type-1; and it is negative if
they belong to different types. The potential of this model is

Q(g, α, β, γ) = α
n∑
i=1

n∑
j=1

gij + β
n∑
i=1

n∑
j=1

n∑
k=1

gijgjk1{Xi=Xk=1}

+ γ

n∑
i=1

n∑
j=1

n∑
k=1

gijgjk1{Xi 6=Xk} (28)

and the data are generated with parameters (2, 11/n,−5/n).
The estimation results in Table 5 for n = 100. The estimates are again very precise for a
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Table 4: Estimated structural parameters for model (27), n=100
true parameters (α, β, γ) = (−2.00, 0.50, 0.01)

n = 100 R=1000 R=10000 R=100000 R=1000000
α β γ α β γ α β γ α β γ

mean -1.9321 0.5098 0.0074 -2.1182 0.5168 0.0133 -2.1034 0.5115 0.0129 -2.0938 0.5196 0.0126
median -1.9756 0.5080 0.0089 -2.1382 0.5214 0.0139 -2.1251 0.5134 0.0136 -2.1066 0.5207 0.0131
std. dev. 0.4677 0.2330 0.0135 0.1899 0.0997 0.0054 0.1877 0.0894 0.0054 0.1832 0.0882 0.0053
mcse 0.0967 0.0209 0.0001 0.0121 0.0037 0.0000 0.0110 0.0028 0.0000 0.0132 0.0027 0.0000
pctile 2.5% -2.7241 0.0459 -0.0224 -2.4259 0.3186 0.0014 -2.4002 0.3341 0.0012 -2.3871 0.3416 0.0013
pctile 97.5% -0.9492 0.9699 0.0300 -1.7149 0.7115 0.0216 -1.6983 0.6896 0.0213 -1.7014 0.6894 0.0211
time (secs) 42 355 3545 35806

Table 5: Estimated structural parameters for model (28), n = 100
true parameters (α, β, γ) = (2.00, 0.11,−0.05)

n = 100 R=1000 R=10000 R=100000
α β γ α β γ α β γ

mean 2.2144 0.1056 -0.0530 2.0718 0.1053 -0.0503 2.0636 0.1052 -0.0501
median 2.0828 0.1064 -0.0506 2.0443 0.1054 -0.0498 2.0396 0.1055 -0.0497
std. dev. 0.8575 0.0227 0.0155 0.3348 0.0084 0.0061 0.2723 0.0066 0.0049
mcse 0.4485 0.0002 0.0001 0.0711 0.0000 0.0000 0.0487 0.0000 0.0000
pctile 2.5% 0.8456 0.0598 -0.0881 1.4803 0.0875 -0.0636 1.5959 0.0914 -0.0608
pctile 97.5% 4.1495 0.1473 -0.0286 2.8115 0.1222 -0.0397 2.6445 0.1174 -0.0418
time (secs) 97 314 2913

moderate amount of simulations.

5 Conclusions

We developed an empirical model of network formation with heterogeneous players, that
converges to a unique stationary equilibrium. The payoffs depend on direct connections, but
also link externalities, e.g. reciprocated links, indirect links, popularity, common connec-
tions, etc. The inclusion of these externalities generates complex interdependencies among
links, and therefore the likelihood does not factorize into independent components. Indeed,
the likelihood is intractable because of a normalizing constant that is infeasible to compute.

We show that for large networks, the constant can be estimated as the solution of a
variational problem. In the special case of homogeneous players the variational problem is
tractable and provides very precise guidance about identification, convergence to stationarity
and the role of externalities.

The general variational problem is intractable and we need some form of approximation.
In this paper, we considered an approximation through sampling, using a Markov chain
Monte Carlo method to approximate the likelihood and the posterior distribution of the
parameters. Sampling is not the only alternative: we could approximate the variational
problem using a deterministic technique. Some preliminary attempts in this direction are
provided in He and Zheng (2013) and Mele (2015), using (structural) mean-field approxima-
tions for the exponential family (see Wainwright and Jordan (2008) and Bishop (2006)). An
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alternative approach is provided in Chandrasekhar and Jackson (2014), by imposing sparsity,
which implies good statistical properties of the estimators and improves the tractability of
the model.

In the development of a model of empirical network formation, we also need to con-
sider how modeling unobserved heterogeneity affects our results. Graham (2014) includes
unobserved heterogeneity in a model with heterogeneous agents, but excludes the link exter-
nalities that are central to our model. We can include unobserved heterogeneity in our model,
with substantial increase in computational burden. However, it is not clear that we can sepa-
rately identify externalities and unobserved heterogeneity using only one network realization.
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A Proofs

Proof of Proposition 1
The potential is a functionQ from the space of actions to the real line such thatQ (gij, g−ij, X)−
Q
(
g′ij, g−ij, X

)
= Ui (gij, g−ij, X)−Ui

(
g′ij, g−ij, X

)
, for any ij.47 A simple computation shows

that, for any ij

Q (gij = 1, g−ij, X)−Q (gij = 0, g−ij, X) = uij + gjimij +
n∑
k=1
k 6=i,j

gjkvik +
n∑
k=1
k 6=i,j

gkivkj

= Ui (gij = 1, g−ij, X)− Ui (gij = 0, g−ij, X)

therefore Q is the potential of the network formation game.

Proof of Proposition 2
The proof consists of showing that Q (g,X) can be written in the form θ′t (g,X). Consider
the first part of the potential∑

i

∑
j

gijuij =
∑
i

∑
j

gij

P∑
p=1

θupHup (Xi, Xj)

=
P∑
p=1

θup
∑
i

∑
j

gijHup (Xi, Xj)

≡
P∑
p=1

θuptup (g,X)

= θ′utu (g,X)

where tup (g,X) ≡
∑
i

∑
j

gijHup (Xi, Xj), θu = (θu1, ..., θuP )′ and tu (g,X) = (tu1 (g,X) , ..., tuP (g,X))′.

Analogously define θm = (θm1, θm2, ..., θmL)′ and tm (g,X) = (tm1 (g,X) , tm2 (g,X) , ..., tmL (g,X))′

and θv = (θv1, θv2, ..., θvS)′ and tv (g,X) = (tv1 (g,X) , tv2 (g,X) , ..., tvS (g,X))′. It follows
that ∑

i

∑
j>i

gijgjimij =
∑
i

∑
j>i

gijgji

L∑
l=1

θmlHml (Xi, Xj)

=
L∑
l=1

θml
∑
i

∑
j>i

gijgjiHml (Xi, Xj)

=
L∑
l=1

θmltml (g,X)

= θ′mtm (g,X)

47 For more details and definitions see Monderer and Shapley (1996).
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and

∑
i

∑
j

gij
∑
k 6=i,j

gjkvij =
∑
i

∑
j

gij
∑
k 6=i,j

gjk

S∑
s=1

θvsHvs (Xi, Xk)

=
S∑
s=1

θvs
∑
i

∑
j

gij
∑
k 6=i,j

gjkHvs (Xi, Xk)

=
S∑
s=1

θvstvs (g,X)

= θ′vtv (g,X)

ThereforeQ (g,X) can be written in the form θ′t (g,X), where θ = (θu, θm, θv)
′ and t (g,X) =

[tu (g,X) , tm (g,X) , tv (g,X)]′

Q (g,X) = θ′utu (g,X) + θ′mtm (g,X) + θ′vtv (g,X)

= θ′t (g,X)

and the stationary distribution is

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

.

Model without preference shocks: characterization of Nash networks
It is helpful to consider a special case of the model, in which there are no preference

shocks: the characterization of equilibria and long run behavior for such model provides
intuition about the dynamic properties of the full structural model.
Let N (g) be the set of networks that differ from g by only one element of the matrix, i.e.

N (g) ≡ {g′ : g′ = (g′ij, g−ij), for all g′ij 6= gij, for all i, j ∈ I}. (29)

A Nash network is defined as a network in which any player has no profitable deviations from
his current linking strategy, when randomly selected from the population. The following
results characterize the set of the pure-strategy Nash equilibria and the long run behavior
of the model with no shocks.

PROPOSITION 3 (Model without Shocks: Equilibria and Long Run)
Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network
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2. The set NE(G, X, U) of all pure-strategy Nash equilibria of the network formation game
is completely characterized by the local maxima of the potential function.

NE(G, X, U) =

{
g∗ : g∗ = arg max

g∈N (g∗)
Q (g,X)

}
(30)

3. Any pure-strategy Nash equilibrium is an absorbing state.

4. As t→∞, the network converges to one of the Nash networks with probability 1.

Proof. 1) The existence of Nash equilibria follows directly from the fact that the network
formation game is a potential game with finite strategy space. (see Monderer and Shapley
(1996) for details)
2) The set of Nash equilibria is defined as the set of g∗ such that, for every i and for every
gij 6= g∗ij

Ui
(
g∗ij, g

∗
−ij, X

)
≥ Ui

(
gij, g

∗
−ij, X

)
Therefore, since Q is a potential function, for every gij 6= g∗ij

Q
(
g∗ij, g

∗
−ij, X

)
≥ Q

(
gij, g

∗
−ij, X

)
Therefore g∗ is a maximizer of Q. The converse is easily checked by the same reasoning.
3) Suppose gt = g∗. Since this is a Nash equilibrium, no player will be willing to change
her linking decision when her turn to play comes. Therefore, once the chain reaches a Nash
equilibrium, it cannot escape from that state.
4) The probability that the potential will increase from t to t+ 1 is

Pr
[
Q
(
gt+1, X

)
≥ Q

(
gt, X

)]
=

=
∑
i

∑
j

Pr
(
mt+1 = ij

)
Pr
[
Ui
(
gt+1
ij , gt−ij, X

)
≥ Ui

(
gtij, g

t
−ij, X

)∣∣mt+1 = ij
]︸ ︷︷ ︸

=1 because agents play Best Response, conditioning on mt+1

=
∑
i

∑
j

ρij = 1.

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore
any probability distribution that puts probability 1 on a Nash network is a stationary distri-
bution. For any initial network, the chain will converge to one of the stationary distributions.
It follows that in the long run the model will be in a Nash network, i.e. for any g0 ∈ G

lim
t→∞

Pr
[
gt ∈ NE

∣∣ g0
]

= 1.
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Proof of Theorem 1
1. The sequence of networks [g0, g1, ...] generated by the network formation game is a markov
chain. Inspection of the transition probability proves that the chain is irreducible and ape-
riodic, therefore it is ergodic. The existence of a unique stationary distribution then follows
from the ergodic theorem (see Gelman et al. (1996) for details).
2. A sufficient condition for stationarity is the detailed balance condition. In our case this
requires

Pgg′πg = Pg′gπg′ (31)

where

Pgg′ = Pr
(
gt+1 = g′

∣∣ gt = g
)

πg = π
(
gt = g

)
Notice that the transition from g to g′ is possible if these networks differ by only one element
gij. Otherwise the transition probability is zero and the detailed balance condition is satisfied.
Let’s consider the nonzero probability transitions, with g = (1, g−ij) and g′ = (0, g−ij). Define
∆Q ≡ Q (1, g−ij, X)−Q (0, g−ij, X).

Pgg′πg = Pr
(
mt = ij

)
Pr (gij = 0| g−ij)

exp [Q (1, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij, X) +Q (0, g−ij, X)−Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij, X)−Q (0, g−ij, X)] exp [Q (0, g−ij, X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij, Xi, Xj)
exp [∆Q]

1 + exp [∆Q]

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pr
(
mt = ij

)
Pr (gij = 1| g−ij)

exp [Q (0, g−ij, X)]∑
ω∈G

exp [Q (ω,X)]

= Pg′gπg′

So the distribution (5) satisfies the detailed balance condition. Therefore it is a stationary
distribution for the network formation model. From part 1) of the proposition, we know that
the process is ergodic and it has a unique stationary distribution. Therefore π (g,X) is also
the unique stationary distribution.
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B Computational Details

B.1 Network Simulation

The algorithm used to simulate the network (ALGORITHM 1) produces samples from
the stationary equilibrium of the model.

1. The network simulation algorithm satisfies the detailed balance condition for the sta-
tionary distribution 5. Indeed for any given θ

Pr (g′|g,X, θ)π (g,X, θ) = qg (g′|g) min

{
1,

exp [Q (g′, X, θ)]

exp [Q (g,X, θ)]

qg (g|g′)
qg (g′|g)

}
exp [Q (g,X, θ)]

c (G, X, θ)

= min

{
qg (g′|g)

exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)
qg (g|g′)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

c (G, X, θ)
,
exp [Q (g′, X, θ)]

c (G, X, θ)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

exp [Q (g′, X, θ)]
, 1

}
exp [Q (g′, X, θ)]

c (G, X, θ)
= Pr (g|g′, X, θ) π (g′, X, θ)

This concludes the proof.

2. The algorithm generates a Markov Chain of network with finite state space. The chain
is irreducible and aperiodic and therefore it is uniformly ergodic (see Theorem 4.9,
page 52 in Levin et al. (2008)).

3. The bound to the convergence rate used in the text was derived by Diaconis and
Stroock (1991), for reversible finite chains.

The algorithm has a very useful property that can be exploited in the posterior simulation to
reduce the computational burden. Adapting the suggestion in Liang (2010), define P(R)

θ′ (g′|g)
as the transition probability of a Markov chain that generates g′ with R Metropolis-Hastings
updates of the network simulation algorithm, starting at the observed network g and using
the proposed parameter θ′. Then,

P(R)
θ′ (g′|g) = Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1), (32)

where Pθ′(gj|gi) = qg(g
j|gi)αmh(gi, gj) is the transition probability of the network simulation

algorithm above. Since the Metropolis-Hastings algorithm satisfies the detailed balance
condition, we can prove the following
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LEMMA 1 Simulate a network g′ from the stationary distribution π (·, X, θ′) using a Metropolis-
Hastings algorithm starting at the network g observed in the data. Then

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
(33)

for all R, g, g′ ∈ G and for any θ′ ∈ Θ.

Proof. Let P(R)
θ′ (g′|g) be defined as in (32). This is the transition probability of the chain

that generates g′ with R Metropolis-Hastings updates, starting at the observed network g
and using the proposed parameter θ′. Notice that the Metropolis-Hastings algorithm satisfies
the detailed balance for π (g,X, θ′), therefore we have

P(R)
θ′ (g|g′)π (g′, X, θ′) = Pθ′(gR−1|g′)Pθ′(gR−2|gR−1) · · · Pθ′(g|g1)π (g′, X, θ′)

= Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1)π (g,X, θ′)

= P(R)
θ′ (g′|g)π (g,X, θ′)

It follows that

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
π (g,X, θ′)

π (g′, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c (G, X, θ′)
c (G, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

This concludes the proof.

One should notice that as long as the algorithm is started from the network g observed in
the data (which is assumed to be a draw from the stationary equilibrium of the model), the
equality in (33) is satisfied for any R.

The approximate exchange algorithm presented in this paper removes the requirement
of exact sampling by exploiting the property of the stationary equilibrium characterization,
described in Lemma 1.

B.2 Posterior Simulation

In this section I provide the technical details for the algorithm proposed in the empirical
part of the paper. The first set of results show that the exchange algorithm generate (ap-
proximate) samples from the posterior distribution (8).

The original exchange algorithm developed in Murray et al. (2006) is slightly different
from the one used here. The main modification is in Step 2: the original algorithm requires
an exact sample from the stationary equilibrium of the model.
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ALGORITHM 3 (EXACT EXCHANGE ALGORITHM)
Start at current parameter θt = θ and network data g.

1. Propose a new parameter vector θ′

θ′ ∼ qθ(·|θ) (34)

2. Draw an exact sample network g′ from the likelihood

g′ ∼ π (·|X, θ′) (35)

3. Compute the acceptance ratio

αex (θ, θ′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(θ)c(θ′)

c(θ)c(θ′)

}
= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(36)

4. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

(37)

The difference between this algorithm and the approximate one is in step 2. The exact
and approximate algorithms use the same acceptance ratio αex (θ, θ′, g′, g), a consequence of
LEMMA 1. Indeed the acceptance ratio for the approximate algorithm is

α̃ex (θ, θ′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

}
(38)

= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(39)

= αex (θ, θ′, g′, g) (40)

This result implies that to prove the convergence of the approximate algorithm to the exact
algorithm, there is no need to prove convergence of α̃ex (θ, θ′, g′, g) to αex (θ, θ′, g′, g). The
convergence of step 2 of the algorithm is sufficient.
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B.2.1 Preliminary Lemmas for THEOREM 6

The convergence of the approximate exchange algorithm to the correct posterior distribution
is proven in 4 steps.

1. First we prove that the exact exchange algorithm converges to the correct posterior
(LEMMA 2)

2. Second, we prove that the approximate algorithm has a stationary distribution and it
is ergodic (LEMMA 3, similar to the one in Liang 2010)

3. Third, we prove that the transition kernel of the approximate and exact algorithms
are arbitrarily close for a large enough number of network simulations (LEMMA 4)

4. Fourth, we combine previous results to prove that the approximate algorithm converges
to the correct posterior

A similar proof strategy is contained in Liang et al. (2010) and Andrieu and Roberts (2009).

Let Q (dϑ|θ) = qθ (ϑ|θ) ν (dϑ). The transition kernel of the exact exchange algorithm can be
written as

P (θ, dϑ) =

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

}

and the transition kernel of the approximate exchange algorithm can be written as

P̃R (θ, dϑ) =

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

+ δθ (dϑ)

{
1−

∫
Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ)

}

Let η (θ) be the average rejection probability for the approximate algorithm, i.e.

η (θ) := 1−
∫

Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
Q (θ, dϑ) (41)

The next lemma proves that the transition kernel satisfies the detailed balance condition for
the posterior distribution. For any pair of parameters (θ, ϑ) ∈ Θ we have

P [θ, ϑ|g,X] p (θ|g,X) = Pr [θ|ϑ, g,X] p (ϑ|g,X) (42)
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The detailed balance condition is sufficient condition for the Markov chain generated by the
algorithm to have stationary distribution the posterior (8) (for details see Robert and Casella
(2005) or Gelman et al. (2003)).

LEMMA 2 The exchange algorithm produces a Markov chain with invariant distribution
(8).

Proof. Define Z ≡
∫

Θ
π (g|X, θ) p (θ) dθ. In the algorithm the probability Pr [ϑ|θ, g,X]

of transition to θj, given the current parameter θ and the observed data (g,X), can be
computed as

Pr [ϑ|θ, g,X] = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g) . (43)

This is the probability qθ (ϑ|θ) of proposing ϑ times the probability of generating the new

network g′ from the model’s stationary distribution, exp[Q(g′,X,ϑ)]
c(G,X,ϑ)

and accepting the proposed

parameter αex (θ, ϑ, g′, g). Therefore the left-hand side of (42) can be written as

Pr [ϑ|θ, g,X] p (θ|g,X) = qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g) p (θ|g,X)

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)
αex (θ, ϑ, g′, g)

exp[Q(g,X,θ)]
c(G,X,θ) p (θ)

Z

= qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

× min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (ϑ)

p (θ)

qθ (θ|ϑ)

qθ (ϑ|θ)
exp [Q(g,X, ϑ)]

exp [Q(g′, X, ϑ)]

}
×

exp[Q(g,X,θ)]
c(G,X,θ) p (θ)

Z

= min

{
qθ (ϑ|θ) exp [Q(g′, X, ϑ)]

c(G, X, ϑ)

exp [Q(g,X, θ)]

c(G, X, θ)
p (θ)

Z
, qθ (θ|ϑ)

exp [Q(g′, X, θ]

c(G, X, θ)
exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z

}

= qθ (θ|ϑ)
exp [Q(g′, X, θ)]

c(G, X, θ)
exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z
×

× min

{
1,

exp [Q(g′, X, ϑ)]

exp [Q(g,X, ϑ)]

p (θ)

p (ϑ)

qθ (ϑ|θ)
qθ (θ|ϑ)

exp [Q(g,X, θ)]

exp [Q(g′, X, θ)]

}
= qθ (θ|ϑ)

exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)

exp [Q(g,X, ϑ)]

c(G, X, ϑ)

p (ϑ)

Z

= qθ (θ|ϑ)
exp [Q(g′, X, θ)]

c(G, X, θ)
α(ϑ, θ, g′, g)p (ϑ|g,X)

= Pr [θ|ϑ, g,X] p (ϑ|g,X)

The latter step proves the detailed balance for a generic network g′. Since the condition is
satisfied for any network g′, detailed balance follows from summing over all possible networks.
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LEMMA 3 (The approximate algorithm is ergodic)
Assume the exact exchange algorithm is ergodic and that for any ϑ ∈ Θ

P(R)
ϑ (g′|g)

π (g′, ϑ)
> 0 for any g′ ∈ G (44)

Then for any R ∈ N such that for any θ ∈ Θ , ρ(θ) > 0, the transition kernel of the

approximate algorithm P̃R is also irreducible and aperiodic, and there exists a stationary
distribution p̃ (θ) such that

lim
s→∞

∥∥∥P̃ (s)
R (θ0, ·)− p̃ (θ)

∥∥∥
TV

= 0 (45)

Proof. The exact algorithm with transition kernel P is an irreducible and aperiodic Markov
chain. To prove that the approximate algorithm with transition kernel P̃R defines an ergodic
Markov chain, it is sufficient to prove that the set of accessible states of P are also included
in those of P̃R. The proof proceeds by induction.
Formally, we need to show that for any s ∈ N, θ ∈ Θ and A ∈ B (Θ) such that P (s) (θ, A) > 0,

implies P̃
(s)
R (θ, A) > 0.

Notice that for any θ ∈ Θ and A ∈ B (Θ),

P̃R (θ, A) =

∫
A

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ)

≥
∫
A

[∑
g′∈G

min

{
1,
P(R)
ϑ (g′|g)

π (g′, ϑ)

}
π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ+ I (θ ∈ A) η (θ) > 0

where the last inequality comes from
P(R)
ϑ (g′|g)
π(g′,ϑ)

> 0 for any g′ ∈ G and ϑ ∈ Θ.
This proves that the statement is true when s = 1. By induction we assume that it is true
up to s = n ≥ 1 and for some θ ∈ Θ chose A ∈ B (Θ) such that P (n+1) (θ, A) > 0 and assume
that ∫

Θ

P̃
(n)
R (θ, dϑ) P̃R (ϑ,A) = 0

This implies that P̃R (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.; by the induction assumption at s = 1 it

follows that P (ϑ,A) = 0, P̃
(n)
R (θ, ·)-a.s.

From this and the induction assumption at s = n, P (ϑ,A) = 0, P (n) (θ, ·)-a.s. (assume not,

then P (ϑ,A) > 0, P (n) (θ, ·)-a.s. which by induction would imply P̃R (ϑ,A) > 0, which is a
contradiction). The latter step contradicts P (n+1) (θ, A) > 0 and the result follows.

The next step consists of proving that the transition kernel of the approximate algorithm
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P̃R (θ, ϑ) and the exact algorithm P (θ, ϑ) are arbitrarily close for a large enough number
of network simulations R. Formally we prove a statement which is equivalent to proving
convergence in total variation norm.48

LEMMA 4 (Convergence of the exact and approximate transition kernels)
Let ε ∈ (0, 1]. There exists a number of simulations R0 ∈ N such that for any function
φ : Θ→ [−1, 1] and any R > R0 , ∣∣∣P̃Rφ(θ)− Pφ(θ)

∣∣∣ < 2ε (46)

Proof. The transition of the exchange algorithm is

P (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

π (g′, ϑ)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

]
while the transition kernel for the approximate algorithm is

P̃R (φ(θ), φ(ϑ)) =

∫
Θ

φ(ϑ)

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

+ φ(θ)

[
1−

∫
Θ

[∑
g′∈G

P(R)
ϑ (g′|g)αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

]
and therefore the difference is

S = P (φ(θ), φ(ϑ))− P̃R (φ(θ), φ(ϑ))

=

∫
Θ

φ(ϑ)

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

− φ(θ)

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

Consider the quantity

S0 =

∫
Θ

[∑
g′∈G

[
π (g′, ϑ)− P(R)

ϑ (g′|g)
]
αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

≤
∫

Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣αex (θ, ϑ, g′, g)

]
qθ (ϑ|θ) dϑ

48See Levin et al. (2008), proposition 4.5, page 49.
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and since αex (θ, ϑ, g′, g) ≤ 1 for any (θ, ϑ) ∈ Θ×Θ and (g′, g) ∈ G × G, we have

S0 ≤
∫

Θ

[∑
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ

=

∫
Θ

[
2 sup
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣] qθ (ϑ|θ) dϑ

The convergence of the network simulation algorithm implies that for any ε > 0, there exists
an R0 (ϑ, ε) ∈ N such that for any R > R0 (ϑ, ε) and for any g ∈ G

2 sup
g′∈G

∣∣∣π (g′, ϑ)− P(R)
ϑ (g′|g)

∣∣∣ ≤ ε

Pick R0 (ε) = maxϑ∈Θ {R0 (ϑ, ε)}. Then for any ε ∈ (0, 1], there is an R0 (ε) ∈ N such that
for any R > R0 (ε) and for any g ∈ G

S0 ≤
∫

Θ

εqθ (ϑ|θ) dϑ = ε

This implies that

|S| ≤ |2S0| = 2ε

(47)

The next theorem is the main result for the convergence. It states that the approximate ex-
change algorithm converges to the correct posterior distribution, provided that the number
of network simulations and parameter samples are big enough.

B.2.2 Proof of THEOREM 6

. Proof. The main idea is to decompose the total variation in two components∥∥∥P̃ (s)
R (θ0, ·)− p (·|g,X)

∥∥∥
TV

=
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·) + P (s) (θ0, ·)− p (·|g,X)
∥∥∥
TV

≤
∥∥∥P̃ (s)

R (θ0, ·)− P (s) (θ0, ·)
∥∥∥
TV

+
∥∥P (s) (θ0, ·)− p (·|g,X)

∥∥
TV

and prove that each component converges. We will use the same idea, but rewrite the total
variation in a more convenient form.49 For any function φ : Θ→ [−1, 1] we have∣∣∣P̃ (s)

R φ (θ0)− p (φ)
∣∣∣ =

∣∣∣P̃ (s)
R φ (θ0)− P (s)φ (θ0) + P (s)φ (θ0)− p (φ)

∣∣∣
≤

∣∣∣P̃ (s)
R φ (θ0)− P (s)φ (θ0)

∣∣∣+
∣∣P (s)φ (θ0)− p (φ)

∣∣
49See Levin et al. (2008), proposition 4.5, page 49.
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The second component converges because the exact exchange algorithm is ergodic, as stated
in Lemma. For any ε > 0 there is number of simulation steps s(θ0, ε), such that for any
s ≥ s(θ0, ε) ∣∣P (s)φ (θ0)− p (φ)

∣∣ ≤ ε (48)

For the remaining of the proof, I will set s0 := s(θ0, ε). I use the telescoping sum decompo-
sition in Andrieu and Roberts (2009) (page 15, adapted from last formula)∣∣∣P̃ (s0)

R φ (θ0)− P (s0)φ (θ0)
∣∣∣ =

∣∣∣∣∣
s0−1∑
l=0

[
P (l)P̃

(s0−l)
R φ (θ0)− P (l+1)P̃

(s0−(l+1))
R φ (θ0)

]∣∣∣∣∣
=

∣∣∣∣∣
s0−1∑
l=0

P (l)
(
P̃R − P

)
P̃

(s0−(l+1))
R φ (θ0)

∣∣∣∣∣
Now we can apply s0 times the result of LEMMA 4 (as in Liang et al. (2010) and Andrieu and
Roberts (2009)) to prove that there exists an R0 (θ0, ε) ∈ N such that for any R > R0 (θ0, ε)∣∣∣P̃ (s0)

R φ (θ0)− P (s0)φ (θ0)
∣∣∣ ≤ 2s0ε (49)

this implies ∣∣∣P̃ (s)
R φ (θ0)− p (φ)

∣∣∣ ≤ (2s0 + 1) ε (50)

We conclude the proof by choosing ε = ε/ (2s0 + 1).
This proves that the approximate exchange algorithm is ergodic, therefore the law of

large number holds, and the second part of the theorem is proven.

C Unobserved heterogeneity

It is possible to incorporate unobserved heterogeneity or random coefficients in the model.
However this would significantly increase the computational cost of estimation. The simplest
way to introduce unobserved heterogeneity is to model the preference shock εij as incorpo-
rating individual random effects. The decision of the player to form a link is modified as
follows

Ui (gij = 1, g−ij, X) + ηi + ηj + νij1 ≥ Ui (gij = 0, g−ij, X) + ηi + νij0 (51)

where νij is an i.i.d. shock with logistic distribution and the vector η = {η1, ..., ηn} is drawn
at time 0 from a known distribution W (η). In this formulation, we assume that the players
observe the random effect η but the econometrician does not. Notice that the random effect
of player i cancels out, while the choice of linking j is conditional on the random effect of
player j (which is present only when the link is formed).

Conditioning on the realization of the vector η ∈ Υ, the potential function is modified as
follows

Q (g,X, θ; η) = Q (g,X, θ) +
n∑
i=1

n∑
j=1

gijηj (52)
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To compute the unconditional likelihood we need to integrate out the unobserved vector η
to obtain

π (g,X, θ) =

∫
Υ

exp [Q (g,X, θ; η)]∑
ω∈G exp [Q (ω,X, θ; η)]

dW (η) (53)

The integral above can be computed using Monte Carlo techniques, as it is standard in the
empirical industrial organization literature or labor economics. However, the model does not
allow standard Monte Carlo, because of the normalizing constant.

A more feasible strategy is to use data augmentation and Markov Chain Monte Carlo
methods as in the discrete choice literature (Rossi et al. (1996), Athey and Imbens (2007)).
Conditioning on the realization of the unobserved component η, we can use the exchange
algorithm to sample from the posterior distribution of θ. Conditioning on the proposed θ we
can use a Metropolis-Hastings step to sample the unobserved component η.

Given an initial (θ, η) at simulation s, we propose a new θ′ and use the exchange algorithm
to accept or reject the proposal. Given the new value of θs+1, we propose a new vector of
unobserved components η′ and accept using a Metropolis-Hastings step. The probability of
η, conditioning on (θ, g,X) is

Pr (η|g,X, θ) =
W (η) π (g,X, θ; η)

π (g,X, θ)
(54)

The Metropolis-Hastings step proceeds by proposing a new η′ from a distribution qη (η′|η),
which is accepted with probability

αη (η, η′, g, θs) =

{
1,
W (η′) π (g,X, θ; η′) qη (η|η′)
W (η) π (g,X, θ; η) qη (η′|η)

}
(55)

Similar ideas apply to random coefficients. However, as discussed in Graham (2014),
when we observe only one network in the data, it is not possible to separately identify the
linking externalities and the unobserved heterogeneity.

The main cost of these extensions is the increased computational burden, which may be
substantial.

D Large networks analysis and convergence

In this paper, we developed a network formation game model, which results in an equilibrium
network similar to a directed ERGM. The probability of observing network g is given by
(notice that gij = 1 does not imply gji = 1, because it is a directed network)

πn(g) =
exp

[∑n
i=1

∑n
j=1 gijuij + 1

2

∑n
i=1

∑n
j=1 gijgjimij +

∑n
i=1

∑n
j=1

∑n
k 6=i,j gijgjkvik

]
c(Gn)

where the functions uij = u(Xi, Xj, θu), mij = m(Xi, Xj, θm) and vik = v(Xi, Xk, θv)
are function of vectors of covariates X ′is and parameters θ = (θu, θm, θv). To simplify, we
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will assume that all this functions are constants, so that we do not consider the covariates.
Hence, the probability of observing network g with parameters α, β, γ

πn(g;α, β, γ) =
exp

[
α
∑n

i=1

∑n
j=1 gij + β

2

∑n
i=1

∑n
j=1 gijgji + γo

∑n
i=1

∑n
j=1

∑n
k 6=i gijgjk

]
c(α, β, γ,Gn)

To apply the analysis of Diaconis and Chatterjee (2011), we rescale the terms as

πn(g;α, β, γ) =
exp

{
n2
[
α

∑n
i=1

∑n
j=1 gij

n2 + β
2

∑n
i=1

∑n
j=1 gijgji

n2 + γ
∑n
i=1

∑n
j=1

∑n
k 6=i gijgjk

n3

]}
c(α, β, γ,Gn)

(56)

Notice that γ needs to be rescaled (i.e. divided by n) when we run the simulations using
the usual ERGM form, i.e. γo = γ

n
for simulations using the ergm package in the software R.

In the formula above, the term
∑n
i=1

∑n
j=1 gij

n2 is the directed edge density of the network,

the term
∑n
i=1

∑n
j=1 gijgji

n2 is the reciprocity density, while
∑n
i=1

∑n
j=1

∑n
k 6=i gijgjk

n3 is the density
of directed two-paths (in our model the latter is intepreted as popularity or indirect links
effect).

In this appendix we provide the technical results about the graph limits, large deviations
and mean-field approximations of the model. In the exposition for graph limits and large
deviations we report some results for undirected networks from Chatterjee and Varadhan
(2011) and Diaconis and Chatterjee (2011), for completeness.

D.1 A crash course on graph limits

Most of this brief digression follows the overview in Diaconis and Chatterjee (2011), focusing
on directed graphs. For a more detailed introduction to graph limits, see Lovasz (2012),
Borgs et al. (2008), and Lovasz and Szegedy (2007). Most of the theory is developed for
dense graphs, but there are several results for sparse graphs. The model presented here
generates a dense graph, therefore we present only the relevant theory.

Consider a sequence of simple directed graphs Gn, where the number of nodes n tends to
infinity. Let |hom(H,G)| denote the number of homomorphisms of simple directed graph H
into G. An homomorphism is an arc-preserving map from the set of vertices V (H) of H to
the set of vertices V (G) of G.50 For the graph limits we are interested in the homomorphism
densities of the form

t(H,G) =
|hom(H,G)|
|V (G)||V (H)|

Intuitively, t(H,G) is the probability that a random mapping V (H)→ V (G) is a homo-
morphism. We are interested in the behavior of t(H,Gn) when n → ∞. In particular we

50An important difference between homomorphisms for undirected graphs and directed graphs is that in
the latter class of models, the existence of homomorphisms is not guaranteed. See Lovasz (2012) for some
additional details.
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want to characterize the limit object t(H), for any simple graph H. The work of Lovasz,
(see Lovasz (2012) for an extensive overview) provides the limit object for this problem. Let
h ∈ W be a function in the space W of all measurable functions h : [0, 1]2 → [0, 1]. This
slightly differs from the original paper of Diaconis and Chatterjee (2011) because we are
considering directed graphs, therefore we do not require the function h to be symmetric. For
comparison with the original formulation, let Wo denote the set of all measurable functions
h : [0, 1]2 → [0, 1] such that h(x, y) = h(y, x).

The existence of such limit objects and the characterization for directed graphs is con-
tained in Boeckner (2013) and extends the usual formulation for undirected graphs. If H is a
simple directed graph with k vertices (i.e. V (H) = {1, 2, ..., k}) the limit object for t(H,Gn)
is

t(H, h) =

∫
[0,1]k

∏
(i,j)∈E(H)

h(xi, xj)dx1 · · · dxk

where E(H) is the set of directed edges of H. For example, if we are interested in
homorphisms of a directed edge, the homomorphism density is

t(H,G) =
|hom(H,G)|
|V (G)||V (H)| =

∑
i

∑
j gij

n2

and the limit object is

t(H, h) =

∫
[0,1]k

∏
(i,j)∈E(H)

h(xi, xj)dx1 · · · dxk =

∫ 1

0

∫ 1

0

h(x, y)dxdy

If we are interested in the indirect links as in our model, we have

t(H,G) =
|hom(H,G)|
|V (G)||V (H)| =

∑
i

∑
j

∑
k gijgjk

n3

with limit object

t(H, h) =

∫
[0,1]k

∏
(i,j)∈E(H)

h(xi, xj)dx1 · · · dxk =

∫ 1

0

∫ 1

0

∫ 1

0

h(x, y)h(y, z)dxdydz

A sequence of graphs {Gn}n≥1 converges to h if for every simple directed graph H

lim
n→∞

t(H,Gn) = t(H, h)

The intuitive interpretation of this theory is simple: when n becomes large, we rescale the
vertices to a continuum interval [0, 1]; and h(x, y) is the probability that there is a directed
edge from x to y. The limit object h ∈ W is called graphon. For any finite graph G with
vertex set {1, ..., n} we can always define the graph limit representation fG as
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fG(x, y) =

{
1 if (dnxe , dnye) is a directed edge of G

0 otherwise

where the symbol dae indicates the ceiling of a, i.e. the smallest integer greater than or
equal to a.

To study convergence in the space W of the functions h, we need to define a metric. We
use the cut distance

d�(f, g) ≡ sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

[f(x, y)− g(x, y)] dxdy

∣∣∣∣
where f and g are functions inW . However, there is some non-trivial complication in the

topology induced by the cut metric. To solve this complication, the usual approach is to work
with a suitably defined quotient space W̃ . We introduce an equivalence relation inW : f ∼ g
if f(x, y) = gσ(x, y) = g(σx, σy) for some measure preserving bijection σ : [0, 1]→ [0, 1]. We

will use h̃ to denote the equivalence class of h in (W , d�). Since d� is invariant under σ, we

can define a distance on the quotient space W̃ as

δ�

(
f̃ , g̃
)
≡ inf

σ
d�(f, gσ) = inf

σ
d�(fσ, g) = inf

σ1,σ2
d� (fσ1 , gσ2)

This makes
(
W̃ , δ�

)
a metric space. with several nice properties: it is compact and the

homomorphism densities t(H, h) are continuous functions on it. We associate fG to any

finite graph G and we have G̃ = τfG = f̃G ∈ W̃ , where τ is a mapping, τ : f → f̃ . For
completeness, we prove the compactness of the metric space, which is crucial for some of the
following proofs.

LEMMA 5 The metric space
(
W̃ , δ�

)
is compact.

Proof. The proof follows similar steps as in Theorem 5.1 of Lovasz and Szegedy (2007).
For every function h ∈ W and a partition P = {P1, P2, ..., Pk} of [0, 1] into measurable sets,
we define hP : [0, 1]2 → [0, 1] to be the stepfunction obtained from h by replacing its value
at (x, y) ∈ Pi × Pj by the average of h over Pi × Pj.

Let h1, h2, ... be a sequence of functions inW . We need to construct a subsequence that
has limit in W̃ . According to Lemmas 3.1.20 and 3.1.21 in Boeckner (2013), we can create
a partition Pn,k = {P1,n,k, ..., Pmk,n,k} of [0, 1] for every n and k. This partition corresponds
to a step-function hn,k = hPn,k ∈ W , such that:

1. δ�(hn, hn,k) ≤ 1/k

2. |Pn,k| = mk (where mk only depends on k)

3. the partition Pn,k+1 refines the partition Pn,k for every k
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Notice that since δ�(hn, hn,k) ≤ 1/k, we can re-arrange the range of hn,k so that all the steps
of the function are intervals. Select a subsequence of hn such that the length of the i-th
interval Pi,n,1 of hn,1 converges for every i as n → ∞; and the value hn,1 on Pi,n,1 × Pj,n,1
also converges for every i and j as n → ∞. Hence, the sequence hn,1 converges to a limit
almost everywhere. Let’s call the limit U1: notice that U1 is also a step-function with m1

steps (that are themselves intervals). We can repeat this procedure for k = 2, 3, ... We obtain
subsequences for which hn,k → Uk almost everywhere, and Uk is a step-function with mk

steps.
We know that for every k < l, the partition Pn,l is a refinement of partition Pn,k. As a

consequence, the partition into the steps of hn,l is a refinement of the partition into the steps
of hn,k. Clearly, the same relation must hold for Ul and Uk, i.e. the partition into the steps
of Ul is a refinement of the partition into the steps of Uk. By construction of hP , the function
hn,k can be obtained from hn,l by averaging its value over each step. As a consequence, the
same holds for Ul and Uk.

It is shown in the proof of Lemma 3.1.21 in Boeckner (2013) that if we pick a random
point (X, Y ) uniformly over [0, 1]2 the sequence U1(X, Y ), U2(X, Y ), ... is martingale, and
each element of the sequence is bounded. Using the Martingale Convergence Theorem we
can show that the sequence U1(X, Y ), U2(X, Y ), ... converges almost everywhere. We define
this limit U .

The rest of the proof is the same as in Theorem 5.1 of Lovasz and Szegedy (2007). Fix
an ε > 0. Then there exists a k > 3/ε, which we denote as K, such that ‖U − Uk‖1 < ε/3.
Fix k = K: then there is an N , such that for all n ≥ N we have ‖Uk − hn,k‖1 < ε/3. Then
we finally have

δ�(U, hn) ≤ δ�(U,Uk) + δ�(Uk, hn,k) + δ�(hn,k, hn)

≤ ‖U − Uk‖1 + ‖Uk − hn,k‖1 + δ�(hn,k, hn)

≤ ε

3
+
ε

3
+
ε

3
= ε

As a consequence hn → U in the metric space
(
W̃ , δ�

)
.

D.2 A crash course on large deviations for random graphs

D.2.1 Undirected graphs (Original Chatterjee and Varadhan (2011) formula-
tion)

Chatterjee and Varadhan (2011) developed a large deviation principle for the undirected
Erdos-Renyi graph. Let G(n, p) indicate the the random undirected graph with n vertices
where each link is formed independently with probability p. Define a function Ip : [0, 1]→ R

Ip(u) ≡ 1

2
u log

u

p
+

1

2
(1− u) log

1− u
1− p

(57)
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whose domain is easily extended to Wo as

Ip(h) =

∫ 1

0

∫ 1

0

Ip (h(x, y)) dxdy

=
1

2

∫ 1

0

∫ 1

0

[
h(x, y) log

h(x, y)

p
+ (1− h(x, y)) log

1− h(x, y)

p

]
dxdy (58)

Analogously we can define Ip on W̃o as Ip(h̃) ≡ Ip(h). The graph G(n, p) induces a
probability distribution Pn,p on Wo, because we can use the map G→ fG; and it induces a

probability distribution P̃n,p on W̃o according to the map G → fG → f̃G = G̃. Chatterjee
and Varadhan (2011) state a large deviation principle for the Erdos Renyi random graph in

both spaces (Wo, d�) and (W̃o, δ�).
We report the main result of Chatterjee and Varadhan (2011) for completeness.

THEOREM 7 (Large deviation principle for Erdos-Renyi graph, Chatterjee and Varadhan

(2011)). For each fixed p ∈ (0, 1), the sequence P̃n,p obeys a large deviation principle in the

space (W̃o, δ�) with rate function Ip(h) defined in (58). For any closed set F̃ ⊆ W̃

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

h̃∈F̃
Ip(h̃)

and for any open set Ũ ⊆ W̃,

lim inf
n→∞

1

n2
log P̃n,p(Ũ) ≥ − inf

h̃∈Ũ
Ip(h̃)

D.2.2 Directed graphs

First, we consider the extension of Theorem 7 to directed Erdos-Renyi graphs. Let Gd(n, p)
indicate the random directed graph with n vertices where each arc is formed independently
with probability p. Define a function Ip : [0, 1]→ R

Ip(u) ≡ u log
u

p
+ (1− u) log

1− u
1− p

(59)

whose domain is easily extended to W as

Ip(h) =

∫ 1

0

∫ 1

0

Ip (h(x, y)) dxdy

=

∫ 1

0

∫ 1

0

[
h(x, y) log

h(x, y)

p
+ (1− h(x, y)) log

1− h(x, y)

p

]
dxdy (60)
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Analogously we can define Ip on W̃ as Ip(h̃) ≡ Ip(h). Chatterjee and Varadhan (2011)

(see their Lemma 2.1) prove that this function is lower semicontinuous on W̃ under the
metric δ�.

The graph Gd(n, p) induces a probability distribution Pn,p onW , because we can use the

map G → fG; and it induces a probability distribution P̃n,p on W̃ according to the map

G→ fG → f̃G = G̃. The large deviation principle for this case is presented in the following
theorem.

THEOREM 8 (Large deviation principle for directed Erdos-Renyi graph) For each fixed

p ∈ (0, 1), the sequence P̃n,p obeys a large deviation principle in the space (W̃ , δ�) with rate

function Ip(h) defined in (60). For any closed set F̃ ⊆ W̃

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

h̃∈F̃
Ip(h̃)

and for any open set Ũ ⊆ W̃,

lim inf
n→∞

1

n2
log P̃n,p(Ũ) ≥ − inf

h̃∈Ũ
Ip(h̃)

Proof. The proof follows the same steps as in the original theorem for undirected graphs
in Chatterjee and Varadhan (2011), but substituting the new rate function in (60). For
the upper bound, we define pi,j as in the original paper, but we do not require symmetry.
We use slightly different regularity conditions, as provided in Boeckner (2013), because of
the directed nature of the graph. In particular we use Lemmas 3.1.14, 3.1.20 and 3.1.21
in Boeckner (2013). With these small changes, Lemma 2.4, 2.5 and 2.6 in Chatterjee and
Varadhan (2011) hold. The proof follows the same steps as in the undirected case. For the
lower bound, the proof is identical, without the requirement of simmetry.

D.3 Undirected ERGM (Chatterjee and Diaconis 2013)

Let T : W̃o → R be a bounded continuous function in space (W̃o, δ�). For a given n the
probability function for the graphs is given by

πn(G) = exp
{
n2
[
T (G̃)− ψn

]}
where G̃ is defined on W̃o according to the map G→ fG → f̃G = G̃, and ψn is a constant

defined as

ψn =
1

n2
log

∑
G∈Gn

exp
{
n2
[
T (G̃)

]}
(61)
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The rescaling by n2 is necessary to guarantee that the limits for n→∞ converge to some
non-trivial quantity. We are interested in finding the value of ψn as n → ∞. We define a
rate function

I(u) ≡ 1

2
u log u+

1

2
(1− u) log(1− u) (62)

which we extend to W̃o as

I(h̃) ≡ 1

2

∫ 1

0

∫ 1

0

I(h(x, y))dxdy

I(h̃) ≡ 1

2

∫ 1

0

∫ 1

0

I(h(x, y))dxdy

=
1

2

∫ 1

0

∫ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy (63)

THEOREM 9 (Theorem 3.1 for ERGM in Chatterjee-Diaconis 2013). If T : W̃o → R is a
bounded continuous function and ψn and I are defined as in (61) and (63) respectively, then

ψ ≡ lim
n→∞

ψn = sup
h̃∈W̃o

{
T (h̃)− I(h̃)

}

D.4 Directed ERGM

Let T : W̃ → R be a bounded continuous function in space (W̃ , δ�). In our model T
corresponds to the potential function Q of the network formation game after rescaling some
of the utility components (see below for details and examples). In what follows, we omit
the dependence on the parameters to simplify notation. For a given n, the probability of
observing network G is given by

πn(G) = exp
{
n2
[
T (G̃)− ψn

]}
where G̃ is defined on W̃ according to the map G → fG → f̃G = G̃, and ψn is a

normalization constant defined as

ψn =
1

n2
log

∑
G∈Gn

exp
{
n2
[
T (G̃)

]}
(64)

This is the same as the stationary distribution of our model, after some re-scaling of the
utility functions. The rescaling by n2 is necessary to guarantee that the limits for n → ∞
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converge to some non-trivial quantity. We are interested in finding the value of ψn as n→∞,
using the same line of reasoning in Theorem 3.1 of Diaconis and Chatterjee (2011). We define
a rate function

I(u) ≡ u log u+ (1− u) log(1− u) (65)

which we extend to W̃ as

I(h̃) ≡
∫ 1

0

∫ 1

0

I(h(x, y))dxdy

=

∫ 1

0

∫ 1

0

[h(x, y) log h(x, y) + (1− h(x, y)) log(1− h(x, y))] dxdy (66)

THEOREM 10 (Asymptotic log-constant for Directed ERGM). If T : W̃ → R is a bounded
continuous function and ψn and I are defined as in (64) and (66) respectively, then

ψ ≡ lim
n→∞

ψn = sup
h̃∈W̃

{
T (h̃)− I(h̃)

}
(67)

Proof. The proof of this result follows closely the proof of Theorem 3.1 in Diaconis and
Chatterjee (2011), with minimal changes. Let Ã denote a Borel set Ã ⊆ W̃ . For each n let

Ãn be the (finite) set

Ãn ≡
{
h̃ ∈ Ã such that h̃ = G̃ for some G ∈ Gn

}
Let Pn,p be the probability distribution of the directed random graph Gd(n, p) defined above.
We have

|Ãn| = 2n(n−1)Pn,1/2(Ãn) = 2n(n−1)Pn,1/2(Ã)

We can use the result in Theorem 8 to show that for a closed subset F̃ of W̃ we have

lim sup
n→∞

1

n2
log P̃n,1/2(F̃n) = lim sup

n→∞

1

n2

[
log |F̃n| − n(n− 1) log 2

]
= lim sup

n→∞

1

n2
log |F̃n| − log 2

≤ − inf
h̃∈F̃
I1/2(h̃)

Therefore we obtain

lim sup
n→∞

1

n2
log |F̃n| ≤ log 2− inf

h̃∈F̃
I1/2(h̃)

= inf
h̃∈F̃
I(h̃)
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Similarly for an open subset Ũ of W̃ we have

lim inf
n→∞

1

n2
log |Ũn| ≥ log 2− inf

h̃∈Ũ
I1/2(h̃)

= inf
h̃∈Ũ
I(h̃)

The rest of the proof is equivalent to the undirected case (see proof of Theorem 3.1 in
Diaconis and Chatterjee (2011).

The result of Theorem 10 shows that as n grows large we can compute the normalizing
constant of the ERGM as the result of a variational problem. The main issue is that the
variational problem does not have a closed-form solution for most cases. However, there are
some special cases in which the solution can be computed explicitly. Let’s consider a model
with utility from directed links and friends of friends. Using the notation developed above,
we are considering a model with function T

T (G̃) = θ1

∑n
i=1

∑n
j=1 gij

n2
+ θ2

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
(68)

For any h ∈ W we can define

T (h) = θ1t(H1, h) + θ2t(H2, h)

where the limit objects are

t(H1, h) =

∫ ∫
[0,1]2

h(x, y)dxdy

and

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

We will assume that θ2 > 0. In this case there is an explicit solution of the variational
problem. The following theorem provides a characterization of the variational problem along
the same lines of Radin and Yin (2013) and Aristoff and Zhu (2014).

THEOREM 11 Let θ2 > 0 and T be defined as in (68) above. Then

lim
n→∞

ψn = ψ = sup
µ∈[0,1]

{
θ1µ+ θ2µ

2 − µ log µ− (1− µ) log(1− µ)
}

1. If θ2 ≤ 2, the maximization problem has a unique maximizer µ∗ ∈ [0, 1]

2. If θ2 > 2 and θ1 ≥ −2 then there is a unique maximizer µ∗ > 0.5
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3. If θ2 > 2 and θ1 < −2, then there is a V-shaped region of the parameters such that

(a) inside the V-shaped region, the maximization problem has two local maximizers
µ∗1 < 0.5 < µ∗2

(b) outside the V-shaped region, the maximization problem has a unique maximizer
µ∗

4. For any θ1 inside the V-shaped region, there exists a θ2 = q(θ1), such that the two
maximizers are both global, i.e. `(µ∗1) = `(µ∗2).

Proof. We need to use the Holder inequality: if p, q are such that 1/p + 1/q = 1, then
for any measurable functions f, g defined on the same domain∫

f(x)g(x)dx ≤
(∫

f(x)pdx

) 1
p
(∫

g(x)qdx

) 1
q

In particular we have in our case

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

≤
(∫ ∫ ∫

[0,1]3
h(x, y)2dxdydz

) 1
2
(∫ ∫ ∫

[0,1]3
h(y, z)2dxdydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2

[∫
[0,1]

dz

]
dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2

[∫
[0,1]

dx

]
dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(x, y)2dxdy

) 1
2

=

∫ ∫
[0,1]2

h(x, y)2dxdy

We have assumed that θ2 > 0. Given the results of the Holder’s inequality we can say
that

T (h) = θ1t(H1, h) + θ2t(H1, h)

= θ1

∫ ∫
[0,1]2

h(x, y)dxdy + θ2

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

≤ θ1

∫ ∫
[0,1]2

h(x, y)dxdy + θ2

∫ ∫
[0,1]2

h(x, y)2dxdy
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Suppose h(x, y) = µ is a constant. Then the equality holds and if µ ∈ [0, 1] solves the
variational problem

lim
n→∞

ψn(θ) = ψ(θ) = sup
µ∈[0,1]

θ1µ+ θ2µ
2 − µ log µ− (1− µ) log(1− µ)

then h(x, y) = µ is the limit graphon.
To show that this is the only solution, let’s consider the maximization problem again.

For h(x, y) to be a solution, we need

T (h) = θ1

∫ ∫
[0,1]2

h(x, y)dxdy + θ2

∫ ∫
[0,1]2

h(x, y)2dxdy

In other words, the Holder inequality must hold with equality, i.e. we need

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

=

∫ ∫
[0,1]2

h(x, y)2dxdy

This implies that
h(x, y) = h(y, z)

for almost all (x, y, z). In particular, we have that given x and y, µ = h(x, y) = h(y, z)
for any z ∈ [0, 1] because the left-hand-side does not depend on z. Given y and z, we
have µ′ = h(y, z) = h(x, y) for any x ∈ [0, 1] because the left-hand-side does not depend
on x. For x = y and z = y we have µ = h(y, y) = h(y, y) = µ′. In addition, we have
h(x, y) = h(y, x) = µ = h(x, z). It follows that h(x, y) = µ almost everywhere.

It follows that T (h) = θ1µ+ θ2µ
2 and I(µ) = µ log µ+ (1− µ) log(1− µ), so we get

lim
n→∞

ψn = ψ = sup
µ∈[0,1]

{
θ1µ+ θ2µ

2 − µ log µ− (1− µ) log(1− µ)
}

We can now characterize the maximization problem above, to obtain the rest of the
results. The analysis follows the same steps of Radin and Yin (2013), Aristoff and Zhu
(2014). The first order and second order conditions are

`′(µ, θ1, θ2) = θ1 + 2θ2µ− log
µ

1− µ
(69)

`′′(µ, θ1, θ2) = 2θ2 −
1

µ(1− µ)
(70)

Let’s study the concavity of `(µ; θ1, θ2). We have that `′′(µ, θ1, θ2) ≤ 0 when

θ2 ≤
1

2µ(1− µ)
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Notice that 2 ≤ 1
2µ(1−µ)

≤ ∞ for any µ ∈ [0, 1]; and 1
2µ(1−µ)

= 2 if µ = 0.5. As a

consequence, the function `(µ; θ1, θ2) is concave on the whole interval [0, 1] for θ2 ≤ 2.
When θ2 > 2, the second derivative can be positive or negative, with inflection points

denoted as a and b: notice that a < 0.5 < b.51

Consider the first derivative `′(µ, θ1, θ2). For θ2 ≤ 2, the derivative is decreasing for any
µ, because `′′(µ, θ1, θ2) ≤ 0 for any µ ∈ [0, 1].

For θ2 > 2 then (see picture of parabola), it is decreasing in [0, a), increasing in (a, b)
and decreasing in (b, 1].
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(1

−
µ)

θ2 = 4

θ2 = 2

a b

The function `(µ, θ1, θ2) is bounded and continuous for any θ and µ ∈ [0, 1], and we could
find the interior maximizers by studying the first and second derivative. If we consider the
case θ2 ≤ 2, the derivative `′(µ, θ1, θ2) is decreasing on the whole interval [0, 1]. It is easy to
show that `′(0) =∞ and `′(1) = −∞. Therefore, when θ2 ≤ 2, there is only one maximizer
µ∗ that solves `′(µ, θ1, θ2) = 0.

If θ2 > 2, then we have 3 possible cases. We know that in this region `′(µ, θ1, θ2) is
decreasing in [0, a), increasing in (a, b) and decreasing in (b, 1].

1. If `′(a, θ1, θ2) ≥ 0, then there is a unique maximizer µ∗ > b

2. If `′(b, θ1, θ2) ≤ 0, then there is a unique maximizer µ∗ < a

3. If `′(a, θ1, θ2) < 0 < `′(b, θ1, θ2), then there are 2 local maximizers µ∗1 < a < b < µ∗2

51This is because, when θ2 > 2, we have `′′(µ, θ1, θ2) ≤ 0 when θ2 ≤ 1
2µ(1−µ) or 2µ(1 − µ) ≤ 1

θ2
. The

equality is realized at two intersections of the horizontal line 1/θ2 with the parabola 2µ(1− µ). We call the
intersections 1

θ2
= 2µ(1− µ), respectively a and b.
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The three cases are shown in the following pictures, where we plot `′(µ, θ1, θ2) against µ for
several values of θ1 and for a fixed θ2 = 4 > 2.
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We indicate the maximizer with µ∗ when it is unique, and with µ∗1, µ
∗
2 when there are

two.
Let’s consider the first case, with `′(a, θ1, θ2) ≥ 0. To compute `′(a, θ1, θ2), notice that

θ2 = 1
2a(1−a)

. Substituting in `′(a, θ1, θ2) we obtain

`′(a, θ1, θ2) = θ1 +
1

1− a
− log

a

1− a
and analogously for θ2 = 1

2b(1−b) we have

`′(b, θ1, θ2) = θ1 +
1

1− b
− log

b

1− b

So `′(a, θ1, θ2) ≥ 0 implies

θ1 ≥ log
a

1− a
− 1

1− a
The function log a

1−a −
1

1−a has a maximum at −2 and therefore we have 52

`′(a, θ1, θ2) ≥ 0⇔ θ1 ≥ −2

When the above condition is satisfied, there is a unique maximizer, µ∗ > b, as shown in
the picture on the left.

When θ1 < −2 it is easier to draw a picture of the function log a
1−a −

1
1−a , shown below.

52Taking derivative 1
a + 1

1−a −
1

(1−a)2 = 0, we obtain the maximizer a∗ = 0.5. The function is increasing

in [0, 0.5) and decreasing in (0.5, 1]. The maximum is therefore at −2.
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Notice that when θ1 < −2 there are two intersections of the function and the horizontal
line y = θ1 (in the picture θ1 = −3). We denote the intersections φ1(θ1) and φ2(θ1).
By construction, we know that a < 0.5 < b. By looking at the picture, it is clear that
`′(a, θ1, θ2) > 0 if a < φ1(θ1) and `′(a, θ1, θ2) < 0 if a > φ1(θ1). Analogously, we have
`′(b, θ1, θ2) > 0 if b > φ2(θ1) and `′(b, θ1, θ2) < 0 if b < φ2(θ1).

For any θ1 < −2, there exist φ1(θ1) and φ2(θ1) which are the intersection of the function
y = log

(
x

1−x

)
− 1

1−x with the line y = θ1. Since the function is continuous, monotonic
increasing in [0, 0.5) and monotonic decreasing in (0.5, 1] it follows that φ1(θ1) and φ2(θ1)
are both continuous in θ1. In addition, φ1(θ1) is increasing in θ1 and φ2(θ1) is decreasing in
θ1. It’s trivial to show that when θ1 decreases, φ1(θ1) converges to 0 while φ2(θ1) converges
to 1.

Consider the case in which `′(a, θ1, θ2) < 0 < `′(b, θ1, θ2) with two maximizers. Define
the function

s(µ) ≡ 1

2µ(1− µ)

Since `′(a, θ1, θ2) < 0 we have a > φ1(θ1), which implies s(a) < s(φ1(θ1)). Therefore
θ2 < s(φ1(θ1)) = 1

2φ1(θ1)(1−φ1(θ1))
.

Since `′(b, θ1, θ2) > 0 we have b > φ2(θ1), which implies s(b) > s(φ2(θ1)). Therefore
θ2 > s(φ2(θ1)) = 1

2φ2(θ1)(1−φ2(θ1))
.

Notice that s(φ1(θ1)) > s(φ2(θ1)) for any (θ1, θ2) in this region of the parameters (see
picture below).
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The areas are shown in the following picture
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Within the V-shaped region there are 2 solutions to the maximization problem, i.e. two
local maxima. Also, it is trivial to show that there exists a function q, such that for θ2 = q(θ1)
both solutions are global maxima. Indeed, the two local maxima are both global maxima
if `(µ∗2, θ1, θ2) − `(µ∗1, θ1, θ2) = 0. The latter difference is negative when µ∗1 is the global
maximizer, while it is positive when µ∗2 is the global maximizer. Therefeore for a given value
of θ1 there must be a unique θ2 such that s(φ1(θ1)) > θ2 > s(φ2(θ1)) such that both µ∗1 and
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µ∗2 are global maximizer. Let’s indicate this value of θ2 = q(θ1).
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Notice that the difference `(µ∗2, θ1, θ2)−`(µ∗1, θ1, θ2), corresponds to the difference between
the positive and negative areas between µ∗1and µ∗2 in the graph above, i.e. (let µ̂ indicate the
intersection of `′(µ, θ1, θ2) and the x-axis between µ∗1and µ∗2)

`(µ∗2, θ1, θ2)− `(µ∗1, θ1, θ2) =

∫ µ∗2

0

`′(µ, θ1, θ2)dµ−
∫ µ∗1

0

`′(µ, θ1, θ2)dµ

=

∫ µ∗1

0

`′(µ, θ1, θ2)dµ+

∫ µ̂

µ∗1

`′(µ, θ1, θ2)dµ

+

∫ µ∗2

µ̂

`′(µ, θ1, θ2)dµ−
∫ µ∗1

0

`′(µ, θ1, θ2)dµ

=

∫ µ̂

µ∗1

`′(µ, θ1, θ2)dµ+

∫ µ∗2

µ̂

`′(µ, θ1, θ2)dµ

When this difference is equal to zero, it means that the positive area and the negative area
are equivalent and they cancel each other out. If we increase θ1, then the curve `′(µ, θ1, θ2)
will shift upwards and the negative area will decrease, therefore we have to decrease θ2 to
counterbalance this effect. The opposite happens when we decrease θ1. Therefore, q(θ1) is a
downward-sloping curve and it is continuous because of the continuity of `′(µ, θ1, θ2). This
completes the proof.

This theoretical result is confirmed by simulations.
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It turns out that there is a more general result. If the homomorphism density t(H2, G)
associated with the parameter θ2 is such that the resulting variational problem can be shown
to be

ψ = sup
µ∈[0,1]

`(µ, α, β) = sup
µ∈[0,1]

{αµ+ βµr − µ lnµ− (1− µ) ln(1− µ)}

where we assume r ≥ 2, then the same characterization applies, as shown in the next
theorem. For example, this is the case if we consider

t(H2, G) =

∑
i

∑
j

∑
k gijgjkgki

n3

with r = 3; or if we consider

t(H2, G) =

∑
i

∑
j

∑
k

∑
l gijgjkgklgli

n4

with r = 4.
The next Lemma, provides conditions under which the network statistics can be upper-

bounded by the power of the graphon. For practical purposes this condition is necessary to
be able to re-write the variational problem as a calculus problem, as shown in the Theorems
below.

LEMMA 6 For the following homomorphism densities:

t(H,G) =

∑
i

∑
j

∑
k gijgjkgki

n3
(71)

t(H,G) =

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
(72)

t(H,G) =

∑
i

∑
j

∑
k

∑
l gijgjkgklgli

n4
(73)

t(H,G) =
1

nr

∑
1≤i,j1,j2,..,jr≤n

gij1gj1j2 · ·gjri (74)

t(H,G) =
1

nr−1

∑
1≤i,j1,j2,..,jr≤n

gij1gij2 · ·gijr (75)

the following property holds

t(H, h) ≤
∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy

where e(H) is the number of directed links included in the subgraph H.
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Proof. For the homomorphism density (71) the value e(H) = 3 and the limit object is

t(H, h) =

∫
[0,1]3

h(x, y)h(y, z)h(z, x)dxdydz

Using the Holder inequality and some algebra, we obtain

t(H, h) =

∫
[0,1]3

h(x, y)h(y, z)h(z, x)dxdydz

≤
(∫

[0,1]3
h(x, y)3dxdydz

) 1
3
(∫

[0,1]3
h(y, z)3dxdydz

) 1
3
(∫

[0,1]3
h(z, x)3dxdydz

) 1
3

=

(∫
[0,1]2

h(x, y)3dxdy

∫ 1

0

dz

) 1
3
(∫

[0,1]2
h(y, z)3dydz

∫ 1

0

dx

) 1
3
(∫

[0,1]2
h(z, x)3dxdz

∫ 1

0

dy

) 1
3

=

(∫
[0,1]2

h(x, y)3dxdy

) 1
3
(∫

[0,1]2
h(y, z)3dydz

) 1
3
(∫

[0,1]2
h(z, x)3dxdz

) 1
3

=

(∫
[0,1]2

h(x, y)3dxdy

) 1
3
(∫

[0,1]2
h(x, y)3dxdy

) 1
3
(∫

[0,1]2
h(x, y)3dxdy

) 1
3

=

∫
[0,1]2

h(x, y)3dxdy =

∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy

For the homomorphism density in (72), e(H) = 2 and using Holder inequality we get

t(H, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

≤
(∫ ∫ ∫

[0,1]3
h(x, y)2dxdydz

) 1
2
(∫ ∫ ∫

[0,1]3
h(y, z)2dxdydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2

[∫
[0,1]

dz

]
dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2

[∫
[0,1]

dx

]
dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(y, z)2dydz

) 1
2

=

(∫ ∫
[0,1]2

h(x, y)2dxdy

) 1
2
(∫ ∫

[0,1]2
h(x, y)2dxdy

) 1
2

=

∫ ∫
[0,1]2

h(x, y)2dxdy
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For the homomorphism density in (74), e(H) = r and using Holder inequality we get

t(H, h) =

∫
[0,1]r

h(xi, xj1)h(xj1 , xj2) · · · h(xjr , xi)dxidxj1 · · · dxjr

≤
(∫

[0,1]r
h(xi, xj1)

rdxidxj1 · · · dxjr
) 1

r
(∫

[0,1]r
h(xj1 , xj2)

rdxidxj1 · · · dxjr
) 1

r

· · ·
(∫

[0,1]r
h(xjr , xi)

rdxidxj1 · · · dxjr
) 1

r

=

(∫
[0,1]2

h(xi, xj1)
rdxidxj1

∫
[0,1]r−2

dxj2 · · · dxjr
) 1

r

×
(∫

[0,1]2
h(xj1 , xj2)

rdxj1dxj2

∫
[0,1]r−2

dxidxj3 · · · dxjr
) 1

r

· · ·
(∫

[0,1]2
h(xjr , xi)

rdxjrdxi

∫
[0,1]r−2

dxj1 · · · dxjr−1

) 1
r

=

(∫
[0,1]2

h(x, y)rdxdy

) 1
r
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

· · ·
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

=

∫
[0,1]2

h(x, y)rdxdy =

∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy
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For the homomorphism density in (75), e(H) = r and using Holder inequality we get

t(H, h) =

∫
[0,1]r

h(xi, xj1)h(xi, xj2) · · · h(xi, xjr)dxidxj1 · · · dxjr

≤
(∫

[0,1]r
h(xi, xj1)

rdxidxj1 · · · dxjr
) 1

r
(∫

[0,1]r
h(xi, xj2)

rdxidxj1 · · · dxjr
) 1

r

· · ·
(∫

[0,1]r
h(xi, xjr)

rdxidxj1 · · · dxjr
) 1

r

=

(∫
[0,1]2

h(xi, xj1)
rdxidxj1

∫
[0,1]r−2

dxj2 · · · dxjr
) 1

r

×
(∫

[0,1]2
h(xi, xj2)

rdxidxj2

∫
[0,1]r−2

dxj1dxj3 · · · dxjr
) 1

r

· · ·
(∫

[0,1]2
h(xi, xjr)

rdxidxjr

∫
[0,1]r−2

dxj1 · · · dxjr−1

) 1
r

=

(∫
[0,1]2

h(x, y)rdxdy

) 1
r
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

· · ·
(∫

[0,1]2
h(x, y)rdxdy

) 1
r

=

∫
[0,1]2

h(x, y)rdxdy =

∫ 1

0

∫ 1

0

h(x, y)e(H)dxdy

The following theorem uses the result of the Lemma 6 above, to show that the variational
problem can be solved explicitly as a one-variable calculus problem in special cases. This
result is very useful in studying the behavior of the model as the number of players grows large
and it provides a way to characterize the convergence of the sampling algorithms according
to the same argument of Bhamidi et al. (2011) (see more detail below).

THEOREM 12 Let β > 0. For the following models

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjkgki

n3

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑
1≤i,j1,j2,..,jr≤n gij1gj1j2 · ·gjri

nr

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑
1≤i,j1,j2,..,jr≤n gij1gij2 · ·gijr

nr−1
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the log-partitition asymptotic variational problem becomes a calculus problem. Let `(µ, α, β)
be the following function

`(µ, α, β) = αµ+ βµr − µ log µ− (1− µ) log(1− µ)

Then, as n→∞, the log-partition is the solution of the following

lim
n→∞

ψn(θ) = ψ(θ) = sup
µ∈[0,1]

`(µ, α, β)

For the following model with β > 0 and γ > 0

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
+ γ

∑n
i=1

∑n
j=1

∑n
k=1 gijgjkgki

n3

the log-partitition asymptotic variational problem is

lim
n→∞

ψn(θ) = ψ(θ) = sup
µ∈[0,1]

{
αµ+ βµ2 + γµ3 − µ log µ− (1− µ) log(1− µ)

}
Proof. Consider the first model. We have assumed that β > 0. Given the results of the

Holder’s inequality in Lemma 6 we can say that

T (h) = αt(H1, h) + βt(H2, h)

≤ α

∫ ∫
[0,1]2

h(x, y)dxdy + β

∫ ∫
[0,1]2

h(x, y)2dxdy

Suppose h(x, y) = µ is a constant. Then the equality holds and if µ ∈ [0, 1] solves the
variational problem

lim
n→∞

ψn(θ) = ψ(θ) = sup
µ∈[0,1]

αµ+ βµ2 − µ log µ− (1− µ) log(1− µ)

then h(x, y) = µ is the limit graphon.
To show that this is the only solution, let’s consider the maximization problem again.

For h(x, y) to be a solution, we need

T (h) = α

∫ ∫
[0,1]2

h(x, y)dxdy + β

∫ ∫
[0,1]2

h(x, y)2dxdy

In other words, the Holder inequality must hold with equality, i.e. we need

t(H2, h) =

∫ ∫ ∫
[0,1]3

h(x, y)h(y, z)dxdydz

=

∫ ∫
[0,1]2

h(x, y)2dxdy
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This implies that
h(x, y) = h(y, z)

for almost all (x, y, z). In particular, we have that given x and y, µ = h(x, y) = h(y, z)
for any z ∈ [0, 1] because the left-hand-side does not depend on z. Given y and z, we
have µ′ = h(y, z) = h(x, y) for any x ∈ [0, 1] because the left-hand-side does not depend
on x. For x = y and z = y we have µ = h(y, y) = h(y, y) = µ′. In addition, we have
h(x, y) = h(y, x) = µ = h(x, z). It follows that h(x, y) = µ almost everywhere.

It follows that T (h) = αµ+ βµ2 and I(µ) = µ log µ+ (1− µ) log(1− µ), so we get

lim
n→∞

ψn = ψ = sup
µ∈[0,1]

{
αµ+ βµ2 − µ log µ− (1− µ) log(1− µ)

}
The proof for the remaining models follows similar steps and reasoning and it is omitted

for brevity.
The next theorem contains a complete characterization of the maximization problem

considered in the previous theorem.

THEOREM 13 Assume that β > 0 and r ≥ 2. If the variational problem can be shown to
be

lim
n→∞

ψn(θ) = ψ(θ) = sup
µ∈[0,1]

{αµ+ βµr − µ log µ− (1− µ) log(1− µ)}

then we have

1. If β ≤ rr−1

(r−1)r
, the maximization problem has a unique maximizer µ∗ ∈ [0, 1]

2. If β > rr−1

(r−1)r
and α ≥ log(r − 1)− r

r−1
then there is a unique maximizer µ∗ > 0.5

3. If β > rr−1

(r−1)r
and α < log(r − 1)− r

r−1
, then there is a V-shaped region of parameters

such that

(a) inside the V-shaped region, the maximization problem has two local maximizers
µ∗1 < 0.5 < µ∗2

(b) outside the V-shaped region, the maximization problem has a unique maximizer
µ∗

4. For any α inside the V-shaped region, there exists a β = ζ(α), such that the two
maximizers are both global, i.e. `(µ∗1) = `(µ∗2).

Proof. The first and second order conditions are

`′(µ, α, β) = α + βrµr−1 − ln

(
µ

1− µ

)
`′′(µ, α, β) = βr(r − 1)µr−2 − 1

µ(1− µ)
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The function `(µ, α, β) is concave if `′′(µ, α, β) < 0, i.e. when

β <
1

r(r − 1)µr−1(1− µ)
≡ s(µ)

The function s(µ) has a minimum at r
r−1

, where s( r
r−1

) = rr−1

(r−1)r
; it is decreasing i, i.e.

`(µ∗1) = `(µ∗2)n the interval
[
0, r

r−1

)
and increasing in the interval

(
r
r−1

, 1
]
. Therefore the

function `(µ, α, β) is concave on the whole interval [0, 1] if β < rr−1

(r−1)r
. 53 In this region, there

is a unique maximizer µ∗ of `(µ, α, β).
If β > rr−1

(r−1)r
there are three possible cases. We know that in this region the second

derivative `′′(µ, α, β) can be positive or negative, with inflection points denoted as a and b,
found by solving the equation β = s(µ). An example for r = 3 and β = 4 is shown in the
figure below (notice that we are plotting the function 1/s(µ) against the line 1/β).

53Consider the function 1/s(µ) = r(r− 1)µr−1(1− µ) = r(r− 1)(µr−1 − µr). This function has derivative

∂[1/s(µ)]

∂µ
= r(r − 1)2µr−2 − r2(r − 1)µr−1 = r(r − 1)µr−2[(r − 1)− rµ]

∂2[1/s(µ)]

∂µ∂µ
= r(r − 1)2(r − 2)µr−3 − r2(r − 1)2µr−2 = r(r − 1)2µr−3[(r − 2)− rµ]

So solving the FOCs we obtain the maximizer of 1/s(µ)

r(r − 1)µr−2[(r − 1)− rµ] = 0⇔ µ =
r − 1

r

and the maximum is

1/s

(
r − 1

r

)
= r(r − 1)

(
r − 1

r

)r−1
(1− r − 1

r
) =

(r − 1)r

rr−1

Therefore the minimum of s(µ) is rr−1

(r−1)r .

76



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ

r(r
−

1)
µ(r−

1)
(1

−
µ)

β = 4

β = 2

a b

In particular, the first derivative `′(µ, α, β) is decreasing in [0, a), increasing in (a, b) and
decreasing in (b, 1].

1. If `′(a, α, β) ≥ 0, then there is a unique maximizer µ∗ > b

2. If `′(b, α, β) ≤ 0, then there is a unique maximizer µ∗ < a

3. If `′(a, α, β) < 0 < `′(b, α, β), then there are 2 local maximizers µ∗1 < a < b < µ∗2

The three cases are shown in the following pictures, where we plot `′(µ, α, β) against µ for
several values of α and for a fixed β = 4. In the pictures r = 3.
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We indicate the maximizer with µ∗ when it is unique, and with µ∗1, µ
∗
2 when there are

two.
Let’s consider the first case, with `′(a, α, β) ≥ 0. To compute `′(a, α, β), notice that

β = s(a) = 1
r(r−1)ar−1(1−a)

. Substituting in `′(a, α, β) we obtain
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`′(a, α, β) = α +
1

(r − 1)(1− a)
− log

a

1− a
and analogously for β = s(b) = 1

r(r−1)br−1(1−b)we have

`′(b, α, β) = α +
1

(r − 1)(1− b)
− log

b

1− b

So `′(a, α, β) ≥ 0 implies

α ≥ log
a

1− a
− 1

(r − 1)(1− a)

The function log a
1−a −

1
(r−1)(1−a)

has a maximum at log(r − 1) − r
r−1

and therefore we

have 54

`′(a, α, β) ≥ 0⇔ θ1 ≥ log(r − 1)− r

r − 1

When the above condition is satisfied, there is a unique maximizer, µ∗ > b, as shown in
the picture on the left.

When θ1 < log(r−1)− r
r−1

it is easier to draw a picture of the function log a
1−a−

1
(r−1)(1−a)

,
shown below.
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Notice that when θ1 < log(r − 1) − r
r−1

there are two intersections of the function and
the horizontal line y = α (in the picture α = −3). We denote the intersections φ1(α) and

54Taking derivative 1
a + 1

1−a −
1

(r−1)(1−a)2 = 0, we obtain the maximizer a∗ = r−1
r . The function is

increasing in [0, r−1r ) and decreasing in ( r−1r , 1]. The maximum is therefore at log(r − 1)− r
r−1 .
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φ2(α). By construction, we know that a < 0.5 < b. By looking at the picture, it is clear
that `′(a, α, β) > 0 if a < φ1(α) and `′(a, α, β) < 0 if a > φ1(α). Analogously, we have
`′(b, α, β) > 0 if b > φ2(α) and `′(b, α, β) < 0 if b < φ2(α).

For any α < −2, there exist φ1(α) and φ2(α) which are the intersection of the function
y = log

(
x

1−x

)
− 1

(r−1)(1−x)
with the line y = α. Since the function is continuous, monotonic

increasing in [0, r−1
r

) and monotonic decreasing in ( r−1
r
, 1] it follows that φ1(α) and φ2(α)

are both continuous in α. In addition, φ1(α) is increasing in α and φ2(α) is decreasing in α.
It’s trivial to show that when α decreases, φ1(α) converges to 0 while φ2(α) converges to 1.

Consider the case in which `′(a, α, β) < 0 < `′(b, α, β) with two maximizers of `(µ, α, β).
Consider the function s(µ) defined above.

Since `′(a, α, β) < 0 we have a > φ1(α), which implies s(a) < s(φ1(α)). Therefore
β < s(φ1(α, β)) = 1

r(r−1)φ1(α)r−1(1−φ1(α))
.

Since `′(b, α, β) > 0 we have b > φ2(α), which implies s(b) > s(φ2(α)). Therefore β >
s(φ2(α)) = 1

r(r−1)φ2(α)r−1(1−φ2(α))
.

Notice that s(φ1(α)) > s(φ2(α)) for any (α, β) in this region of the parameters (see
picture below for an example with β = 4, α = −2, and r = 3).
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The areas are shown in the following picture
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and the rest of the proof follows. The existence of ζ(α) is shown using similar argument
as in the proof of Theorem 11, so it is omitted for brevity.

The next result is analogous to Theorem 6.3 in Diaconis and Chatterjee (2011), adapted
to the directed network model. It shows that not all the specifications of the model generate
directed Erdos-Renyi networks. We show this by focusing on a special case.

THEOREM 14 Consider the model with re-scaled potential T (G) and with β < 0,

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3

Then for any value of α, there exists a positive constant C(α) such that for β < −C(α), the
variational problem is not solved at a constant graphon.

Proof. Fix the value of α and let p = eα

1+eα
, and λ = −β. For any h we have

80



T (h)− I(h) = α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz

+

∫
h(x, y) ln(1 + eα)dxdy −

∫
h(x, y) ln(1 + eα)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz +

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz +

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

+

∫
ln(1− p)dxdy −

∫
ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + ln(1− p)

−
∫
h(x, y) ln

h(x, y)

p
+ (1− h(x, y)) ln

1− h(x, y)

1− p
dxdy

= −λt(H2, h) + ln(1− p)− Ip(h)

We have assumed that β < 0. Assume that the quantity T (h)− I(h) is maximized at a
constant graphon h(x, y) = µ. As a consequence, µ minimizes the function

λt(H2, h) + Ip(h) = λµ2 + Ip(µ)

Since µ is the graphon that maximizes T (h)−I(h), then we have that for any x ∈ [0, 1],
the following holds: λµ2 + Ip(µ) ≤ λx2 + Ip(x). The first order conditions for minimization
give

v(x) =
d

dx

[
λx2 + Ip(x)

]
= 2λx+ ln

x

1− x
− ln

p

1− p
Notice that v(0) = −∞ and v(1) = +∞, therefore µ must be an interior minimum. By

solving the first order conditions

2λµ+ ln
µ

1− µ
− ln

p

1− p
= 0
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it is easy to see that there exists a function c(λ) such that

µ =
exp

[
−2λµ+ ln p

1−p

]
1 + exp

[
−2λµ+ ln p

1−p

] ≤ c(λ)

So we getµ ≤ c(λ), where c(λ) is a function such that

lim
λ→∞

c(λ) = 0

and therefore it follows that

lim
λ→∞

min
x∈[0,1]

λx2 + Ip(x) = Ip(0) = ln
1

1− p

We will now show that there exists a graphon ν(x, y) which is not a constant and gives
a lower value of the expression above.

Let ν(x, y) be the function

ν(x, y) =

{
p if x ∈ [0, .5]and y ∈ [.5, 1]

0 otherwise

It follows that for almost all (x, y, z) triplets, ν(x, y)ν(y, z) = 0 and thus, t(H2, ν) = 0.
If we compute the value of Ip(ν) we obtain

Ip(ν) =

∫
[ 12 ,1]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[ 12 ,1]

p ln
p

p
+ (1− p) ln

1− p
1− p

dxdy

+

∫
[ 12 ,1]×[ 12 ,1]

0 ln
0

p
+ ln

1

1− p
dxdy

=
3

4
ln

1

1− p

Therefore we have shown that for λ large enough (i.e. for β negative and large enough),
T (ν)−I(ν) ≥ T (µ)−I(µ) . So, given a value for α, there exists a C(α) large enough, such
that for any β < −C(α) a constant graphon is not solution to the variational problem.

This result extends to models with two parameters and higher order dependencies, as
shown in the next theorem
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THEOREM 15 For the models in the first part of Theorem 12, the result of Theorem 14
hold.

Proof. The proof is equivalent to the proof of Theorem 14, replacing µ2 with µr, where
r is the order of dependence of the second homomorphism density t(H2, h).

THEOREM 16 Consider the model with re-scaled potential T (G) and with β < 0,

T (G) = α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k=1 gijgjk

n3
+ γ

∑n
i=1

∑n
j=1

∑n
k=1 gijgjkgki

n3
(76)

Then for any value of α ∈ R and γ > 0, there exists a positive constant C(α, γ) > 0 such that
for β < −C(α, γ), the variational problem is not solved at a constant graphon. Analogously,
if γ < 0, then for any value of α ∈ R and β > 0, there exists a positive constant C(α, β) > 0
such that for γ < C(α, γ), the variational problem is not solved at a constant graphon.

Proof. Fix the value of α and γ > 0. Let p = eα

1+eα
, and λ = −β. For any h we have
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T (h)− I(h) = α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= α

∫
h(x, y)dxdy + β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

+

∫
h(x, y) ln(1 + eα)dxdy −

∫
h(x, y) ln(1 + eα)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

+

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz

+

∫
h(x, y) ln pdxdy +

∫
h(x, y) ln(1− p)dxdy

+

∫
ln(1− p)dxdy −

∫
ln(1− p)dxdy

−
∫
h(x, y) lnh(x, y) + (1− h(x, y)) ln(1− h(x, y))dxdy

= β

∫
h(x, y)h(y, z)dxdydz + γ

∫
h(x, y)h(y, z)h(z, x)dxdydz + ln(1− p)

−
∫
h(x, y) ln

h(x, y)

p
+ (1− h(x, y)) ln

1− h(x, y)

1− p
dxdy

= βt(H2, h) + γt(H3, h) + ln(1− p)− Ip(h)

We have assumed that β < 0. Assume that the quantity T (h)− I(h) is maximized at a
constant graphon h(x, y) = µ. As a consequence, µ maximizes the function

βt(H2, h) + γt(H3, h)− Ip(h) = βµ2 + γµ3 − Ip(µ)

Since µ is the graphon that maximizes T (h)−I(h), then we have that for any x ∈ [0, 1],
the following holds: βµ2 + γµ3 − Ip(µ) ≥ βx2 + γx3 − Ip(x). The first order conditions for
maximization give

v(x) =
d

dx

[
βx2 + γx3 − Ip(x)

]
= 2βx+ 3γx2 − ln

x

1− x
+ ln

p

1− p
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Notice that v(0) = +∞ and v(1) = −∞, therefore µ must be an interior maximum. By
solving the first order conditions

2βµ+ 3γµ2 − ln
µ

1− µ
+ ln

p

1− p
= 0

it is easy to see that there exists a function c(β, γ) such that

µ =
exp

[
2βµ+ 3γµ2 − ln p

1−p

]
1 + exp

[
2βµ+ 3γµ2 − ln p

1−p

] ≤ c(β, γ)

So we get µ ≤ c(β, γ), and c(β, γ) is a function such that

lim
β→−∞

c(β, γ) = 0

and therefore, it follows that

lim
β→−∞

min
x∈[0,1]

βx2 + γx3 − Ip(x) = −Ip(0) = − ln
1

1− p

We will now show that there exists a graphon ν(x, y) which is not a constant and gives
a lower value of the expression above.

Let ν(x, y) be the function

ν(x, y) =

{
p if x ∈

[
0, 1

2

]
and y ∈

[
1
2
, 1
]

0 otherwise

It follows that for almost all (x, y, z) triplets, ν(x, y)ν(y, z) = 0 and ν(x, y)ν(y, z)ν(z, x) =
0. As a consequence t(H2, ν) = 0 and t(H3, ν) = 0. If we compute the value of Ip(ν) we
obtain

Ip(ν) =

∫
[ 12 ,1]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[0, 12 ]

0 ln
0

p
+ ln

1

1− p
dxdy

+

∫
[0, 12 ]×[ 12 ,1]

p ln
p

p
+ (1− p) ln

1− p
1− p

dxdy

+

∫
[ 12 ,1]×[ 12 ,1]

0 ln
0

p
+ ln

1

1− p
dxdy

=
3

4
ln

1

1− p
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Therefore we have shown that for β < 0 large enough in magnitude, T (ν) − I(ν) ≥
T (µ) − I(µ) . So, given a value of α ∈ R and γ > 0, there exists a positive constant
C(α, γ) > 0, such that for β < −C(α, γ) a constant graphon is not solution to the variational
problem (67) for the model in 76). The proof for γ < 0 follows the same steps.

THEOREM 17 Fix parameter γ > 0. Let the variational problem be described as

lim
n→∞

ψn(θ) = ψ(θ) = sup
µ∈[0,1]

{
αµ+ βµ2 + γµ3 − µ log µ− (1− µ) log(1− µ)

}
Let µ0 be (uniquely) determined by

6γ =
2µ0 − 1

µ2
0(1− µ0)2

and letα0,β0 be defined as follows:

β0 =
1

2µ0(1− µ0)
− 3γµ0

α0 = log
µ0

1− µ0

− 1

(1− µ0)
+

2µ0 − 1

2(1− µ0)2

1. If β ≤ β0, the maximization problem has a unique maximizer µ∗ ∈ [0, 1]

2. If β > β0 and α ≥ α0 then there is a unique maximizer µ∗ > 0.5

3. If β > β0 and α < α0, then there are two functions Sγ(φ1(α)) and Sγ(φ2(α)) that
define a V-shaped region of parameters (α, β) such that

(a) inside the V-shaped region, the maximization problem has two local maximizers
µ∗1 < 0.5 < µ∗2

(b) outside the V-shaped region, the maximization problem has a unique maximizer
µ∗

4. For any α < α0 inside the V-shaped region, there exists a function β = ζγ(α), such
that Sγ(φ1(α)) < ζγ(α) < Sγ(φ2(α)) and the two maximizers are both global.

Proof. Fix γ > 0 and consider the function

`γ(µ, α, β) = αµ+ βµ2 + γµ3 − µ log µ− (1− µ) log(1− µ)

For the moment we do not constrain β to be positive. The first and second order derivatives
w.r.t. µ are

`′γ(µ, α, β) = α + 2βµ+ 3γµ2 − ln

(
µ

1− µ

)
`′′γ(µ, α, β) = 2β + 6γµ− 1

µ(1− µ)
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The function `γ(µ, α, β) is concave if `′′γ(µ, α, β) < 0, i.e. when

2β + 6γµ <
1

µ(1− µ)
≡ s(µ)

The function s(µ) is decreasing in [0, .5) and increasing in (.5, 1], and it has a minimum
at µ = .5, where s(0.5) = 4.

Let µ0 be the value of µ at which the line 2β + 6γµ is tangent to s(µ), defined as the
solution of

6γ =
2µ− 1

µ2(1− µ)2

Notice that µ0 is unique, since the right-hand-side of the equation is a monotone increasing
function. Given µ0, we can find β0 by solving

β0 =
1

2

[
−6γµ0 +

1

µ0(1− µ0)

]
Therefore the function `γ(µ, α, β) is concave on the whole interval [0, 1] if β ≤ β0. In this

region, there is a unique maximizer µ∗ of `γ(µ, α, β).
If β > β0 the line 2β + 6γµ has two intersections with s(µ), and there are three possible

cases. We know that in this region the second derivative `′′γ(µ, α, β) can be positive or
negative, with inflection points denoted as a and b, found by solving the equation 2β+6γµ =
s(µ). In the picture below, we plot s(µ) (in red), the line 2β+ 6γµ (blue dashed) that define
the points a and b, and the tangent line (black solid) that defines µ0.
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By looking at the picture is clear that the first derivative `′γ(µ, α, β) is decreasing for
µ ∈ [0, a), increasing in µ ∈ (a, b) and decreasing in µ ∈ (b, 1].

87



1. If `′γ(a, α, β) ≥ 0, then there is a unique maximizer µ∗ > b

2. If `′γ(b, α, β) ≤ 0, then there is a unique maximizer µ∗ < a

3. If `′γ(a, α, β) < 0 < `′γ(b, α, β), then there are 2 local maximizers µ∗1 < a < b < µ∗2

The three cases are shown in the following pictures, where we plot `′γ(µ, α, β) against µ for
several values of α and for a fixed β = 1 and γ = 1.5
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We indicate the maximizer with µ∗ when it is unique, and with µ∗1, µ
∗
2 when there are

two.
Let’s consider the first case, with `′γ(a, α, β) ≥ 0. To compute `′γ(a, α, β), notice that

β =
1

2a(1− a)
− 2µ0 − 1

2µ2
0(1− µ0)2

a

Substituting in `′γ(a, α, β) we obtain

`′γ(a, α, β) = α +
a

a(1− a)
− 2µ0 − 1

µ2
0(1− µ0)2

a2 +
2µ0 − 1

2µ2
0(1− µ0)2

a2 − log
a

1− a

= α +
1

(1− a)
− 2µ0 − 1

2µ2
0(1− µ0)2

a2 − log
a

1− a

and analogously we have for b

`′γ(b, α, β) = α +
1

(1− b)
− 2µ0 − 1

2µ2
0(1− µ0)2

b2 − log
b

1− b

Notice that we can write `′γ(a, α, β) = α+η(a), where η(a) = 1
(1−a)
− 2µ0−1

2µ20(1−µ0)2
a2−log a

1−a .

Consider the derivative of η(a)

η′(a) =
1

(1− a)2
− 2µ0 − 1

µ2
0(1− µ0)2

a− 1

a(1− a)

= a

[
2a− 1

a2(1− a)2
− 2µ0 − 1

µ2
0(1− µ0)2

]
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We know that the function h(a) = 2a−1
a2(1−a)2

is monotone increasing, with h(0) = −∞ and

h(1) =∞. Therefore the minimum of η(a) is found at a = µ0, where we have

η(µ0) =
1

(1− µ0)
− 2µ0 − 1

2(1− µ0)2
− log

µ0

1− µ0

This means that `′γ(a, α, β) ≥ 0 only if

α ≥ α0 = −η(µ0) = log
µ0

1− µ0

− 1

(1− µ0)
+

2µ0 − 1

2(1− µ0)2

When the above condition is satisfied, there is a unique maximizer, µ∗ > b, as shown in
the picture on the left.

When α < α0 and β > β0, we have `′γ(a, α, β) < 0 < `′(b, α, β). We draw a picture of
−η(µ) to help with the reasoning
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Notice that when α < α0 there are two intersections of the function and the horizontal line
y = α (in the picture α = −3). We denote the intersections φ1(α) and φ2(α). By construc-
tion, we know that a < 0.5 < b. By looking at the picture, it is clear that `′γ(a, α, β) > 0 if
a < φ1(α) and `′γ(a, α, β) < 0 if a > φ1(α). Analogously, we have `′γ(b, α, β) > 0 if b > φ2(α)
and `′γ(b, α, β) < 0 if b < φ2(α).

For any α < α0, there exist φ1(α) and φ2(α) which are the intersections of the function
−η(µ) with the line α. Since the function is continuous, monotonic increasing in [0, µ0) and
monotonic decreasing in (µ0, 1] it follows that φ1(α) and φ2(α) are both continuous in α. In
addition, φ1(α) is increasing in α and φ2(α) is decreasing in α. It’s trivial to show that when
α decreases, φ1(α) converges to 0 while φ2(α) converges to 1.

Consider the case in which `′γ(a, α, β) < 0 < `′γ(b, α, β) with two maximizers of `γ(µ, α, β).
Consider the function

S(µ) =
1

2µ(1− µ)
− 2µ0 − 1

2µ2
0(1− µ0)2

µ

Since `′γ(a, α, β) < 0 we have a > φ1(α), which implies S(a) < S(φ1(α)). Therefore

β < S(φ1(α)) = 1
2φ1(α)(1−φ1(α))

− 2µ0−1
2µ20(1−µ0)2

φ1(α).

Since `′γ(b, α, β) > 0 we have b > φ2(α), which implies S(b) > S(φ2(α)). Therefore

β > S(φ2(α)) = 1
2φ2(α)(1−φ2(α))

− 2µ0−1
2µ20(1−µ0)2

φ2(α).
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Notice that S(φ1(α)) > S(φ2(α)) for any (α, β) in this region of the parameters (see
picture below for an example with β = 1, α = −3, and γ = 1.5).
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In the following pictures we show the function S(φ1(α)) and S(φ2(α)) in the (α, β) space,
for a given γ > 0. Notice that for our models, we are only interested in the part of the graph
where β > 0. The graphs show that when we increase the value of γ the area in which the
model has multiple local maxima increases.
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The existence of ζγ(α) is shown using similar argument as in the proof of Theorem 11,
so it is omitted for brevity.

The last set of results extends the analysis of sampling algorithms in Bhamidi et al.
(2011) to directed graphs. In particular, the solution to the variational problems in the
previous theorems provides a characterization for the convergence of the MCMC samplers
commonly used to simulate samples of ERGMs from the model. The set of parameters
that lie within the V-shaped region, correspond to what Bhamidi et al. (2011) call the low
temperature phase. The set of parameters lying outside the V-shaped region correspond to
the high temperature phase.

To be precise, let M̃∗ ⊂ W̃ be the set of maximizers of the variational problem and let
Gn be a graph on n vertices drawn from the ERGM model implied by function T . The next
theorem shows that as n grows large, the network G̃n must be close to the set M̃∗. If the
set consists of a single graph, then this is equivalent to a weak law of large numbers for Gn.

THEOREM 18 Let M̃∗ be the set of maximizers of the variational problem (67). Let Gn

be a graph on n vertices drawn from the model implied by function T . Then for any η > 0
there exist C, κ > 0 such that for any n

P(δ�(G̃n, M̃
∗) > η) ≤ Ce−n

2κ

where P denotes the probability measure implied bu the model.

Proof. The proof is identical to the proof of Theorem 3.2 in Diaconis and Chatterjee
(2011)

For the model we analyze in this paper, the result specializes to the following theorem.
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THEOREM 19 Consider the model above in (68) and assume θ2 > 0. Let Gn be the
directed graph implied by the model.

1. If the maximization problem in Theorem 11 has a unique solution µ∗, then Gn →
Gd(n, µ

∗) in probability as n→∞.

2. If the maximization problem in Theorem 11 has two solutions µ∗1 <
1
2
< µ∗2, then Gn

is drawn from a mixture of directed Erdos-Renyi graphs Gd(n, µ
∗
1) and Gd(n, µ

∗
2), as

n→∞.

Proof. It is an application of Theorem 18.

The previous results consider the limit as n → ∞. However, for fixed n, the speed of
convergence of the model to the stationary distribution πn can be studied using the previous
results. The model evolves according to a Glauber dynamics: essentially it behaves like a
random Gibbs sampler.

In particular, when the maximization problem in Theorem 11 has a unique solution,
the Markov chain of networks converges in an order n2 log n steps. However, when the
maximization problem in Theorem 11 has two solutions µ∗1 <

1
2
< µ∗2, the convergence is

exponentially slow, i.e. there exists a constant C > 0 such that the number of steps needed
to reach stationarity are O(eCn). This is true for any local chain, i.e. a chain that updates
o(n) links per iteration.

The main convergence result that is proven in Bhamidi et al. (2011) is extended to our
directed network formation model in the following proposition.

PROPOSITION 4 (Convergence rates) Assume β, γ > 0 in any of the models in The-
orem 12.

1. If the variational problem has a unique solution, we say that the parameters belong to
the high temperature region. The chain of networks generated by the model mixes in
order n2 log n steps.

2. If the variational problem has two local maxima, we say that the parameters belong to
the low temperature region. The chain of networks generated by the model mixes in
order en

2
steps. This holds for any local dynamics, i.e. a dynamics that updates an

o(n) number of links per period.

Proof. See Bhamidi et al. (2011), Thm. 5 and 6
The main reason for the slow convergence in the bi-modal regime is that a local chain

makes small steps. The solution to this problem is to allow the sampler to perform larger
steps. However, large steps are not sufficient. Indeed, we need to be able to make large steps
of order n: in other words we need a large step whose size is a function of n.
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The result of asymptotically independent edges (Theorem 7 in Bhamidi et al. (2011)) is
proven above in our Theorem 19.
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