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Abstract

Existing indices of residential segregation are based on a partition of the city
in neighborhoods: given a spatial distribution of racial groups, the index
measures different segregation levels for different partitions. I propose a
spatial approach, which estimates segregation at the individual level and
produces the entire spatial distribution of segregation. This method provides
different rankings of cities in terms of segregation and new insights on the
effect of segregation on socioeconomic outcomes. Using Census data and
controlling for endogeneity using instrumental variables, I show that reduced
form estimates of the impact of segregation on socioeconomic outcomes are
not robust to the spatial approach.
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1. Introduction

This paper studies the relationship between racial residential segregation
and socioeconomic outcomes, using a new family of indices derived from
spatial statistics. The spatial separation of racial groups in US metropoli-
tan areas is well documented by a large body of research in sociology and
economics.1 Most of the studies find a negative correlation between residen-
tial segregation and socioeconomic outcomes of minorities. The empirical
strategy in this literature consists of regressing a measure of socioeconomic
performance on several controls and an index that proxies for the level of

1See for example Massey and Denton (1988), Massey and Denton (1993), Cutler and
Glaeser (1997), Cutler et al. (1999),Ananat (2011), Echenique and Fryer (2007), Frankel
and Volij (2011), Card and Rothstein (2007), Collins and Margo (2000), Ferrara and Mele
(2011),Ananat and Washington (2009).
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segregation in the metropolitan area.
However, the majority of existing indices are based on a partition of the

city in neighborhoods, that directly affects the estimated segregation.2 Given
a spatial distribution of the racial groups in the city, the index measures dif-
ferent segregation levels if researchers adopt different partitions.

In this paper, I develop a method to measure segregation that considers
individuals and their locations as primitives, avoiding the problem of ar-
bitrary partitions. The method consists of estimating a continuous spatial
density for the location probability of each racial group. When there is no
segregation the spatial density of each group should be flat and equal to the
proportion of the group in the metropolitan area. The index measures the
deviation of the estimated spatial density from the flat density at each loca-
tion, providing the entire distribution of segregation among individuals and
over space. The segregation level of the city is measured as the average of
the estimated individual segregation.

The intuition behind this formulation is simple. Suppose to select a ran-
dom coordinate in the metropolitan area and draw a circle of 1km radius
around the point. Compute the share of blacks living in the circle: this is
the probability of black location in that small area. Now let’s shrink the ra-
dius until the area around the point becomes infinitesimal. The limit of the
black share is the probability that the individual at that location is African
American. Now suppose to repeat this procedure for all the points in the
metropolitan area: the result will be a continuous spatial density, that de-
scribes the probability of blacks location in the city. If there is no segregation
the spatial distribution of blacks does not vary over the metropolitan area, it
is flat. Therefore the metropolitan area segregation will be higher the greater
the difference between the actual spatial distribution of racial groups and the
flat spatial density.

This approach has several advantages with respect to the traditional
neighborhood-based approach. First, the index does not depend on arbitrary
partitions of the city. Second, the methodology provides the entire distri-
bution of segregation over space and among individuals. As a result, the
researcher is able to identify which regions and individuals account for the

2The Spectral Segregation Index of Echenique and Fryer (2007) is an exception. Their
index uses individual locations as primitive of the index and therefore does not depend on
an arbitrary partition of the city in neighborhoods.
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aggregate city-level segregation. Third, the computational burden for the
measurement of segregation is minimal, since estimation is performed using
simple non-parametric techniques available in standard statistical software.

I provide the theoretical background for the methodology and apply the
technique to the measurement of segregation in US metropolitan areas, us-
ing Census data. Results show that the spatial index provides a different
ranking of the US metropolitan areas in terms of segregation levels, than the
one implied by traditional measures. The differences among the spatial and
traditional approach are more pronounced in cities with lower income levels,
smaller population, lower geographic density and higher fraction of African
Americans.

Furthermore, using the index to study the effect of segregation on in-
dividual outcomes provides new insights on the relationships between spa-
tial separation of racial groups and socioeconomic performance. The least
squares results show that the relationship between segregation and outcomes
estimated using the traditional approach is different from when I use the
spatial approach. I provide evidence that the spatial index has additional
explanatory power and conveys information that is not already contained in
the traditional index.

If differences among the approaches are due to pure measurement er-
ror in the segregation index, they should disappear when using instrumental
variables. I use the inter- and intracounty rivers in a metropolitan area as in-
struments for segregation, and find that the differences among the approaches
persist. Using alternative indices of segregation and alternative samples does
not change the result.

An interesting result is that for most cities the individual segregation
distribution is not bell-shaped: few highly segregated individuals drive the
high average segregation levels. I consider using a more robust proxy of seg-
regation at the city level, i.e. the segregation of the median individual in
the metropolitan area. In such IV estimates, the effect of segregation on
outcomes is never significant.

The empirical evidence points out that that reduced-form estimates of
the effect of segregation on outcomes are not robust to the spatial approach.
A micro-founded economic model, in which segregation and outcomes are de-
termined as equilibrium quantities, could help to shed light on the economic
reasons behind these results.

The paper is related to several strands of literature. The literature on
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segregation indices is certainly heavily influenced by the work of Massey and
Denton (1988). They review the indices of segregation and group them in
five categories: evenness, exposure, concentration, centralization and clus-
tering. They show that the dissimilarity index can explain almost the entire
variability of segregation in US cities. Reardon and O’Sullivan (2004) extend
the traditional theory of segregation indices to spatial measures. They adapt
the properties often required to neighborhood-based indices to a framework
based on the location of individuals on a city map. They extend the exist-
ing indices in this new framework and check if they satisfy the properties
required. Segregation is measured as a function of the agents’ local environ-
ment, where the latter is defined by a proximity function. There are two main
differences between their framework and mine: 1) the local environment in
this paper is infinitesimal, since I consider a continuous spatial density; 2)
I assume that locations are the realization of a stochastic process, while in
their paper individual coordinates are assumed as given.

Most of the contributions in economics are based on axiomatic approaches,
but consider the neighborhood partitions as given (See Frankel and Volij
(2011) and Hutchens (2004) for examples). I do not rely on an axiomati-
zation, but I impose assumptions on the stochastic process that generates
locations and marks. In this sense, part of this paper’s contribution is to
operationalize the estimation of the spatial density using a simple spatial
process.

The spatial approach can be considered as a complement to the spectral
approach of Echenique and Fryer (2007): they develop a segregation index
based on individuals’ social networks, satisfying three axioms. The Spectral
Segregation Index (SSI) measures segregation based on social interactions
with same race neighbors and it can disaggregate at the individual level. In
this sense the SSI shares most of the advantages of the spatial approach,
since it is indipendent of neighborhood partitions. The Spectral Segregation
Index is more apt to measure segregation in non-spatial contexts (school
segregation, employment segregation) where the spatial approach cannot be
implemented. On the other hand, the spatial approach has a comparative
advantage in dealing with segregation in geographical contexts, where the SSI
uses geographical distance only as an approximation for social interactions.
In this sense we can distinguish the two approaches: the spectral approach
is individual-specific while the spatial approach is location-specific.

Another important difference between the Spectral Segregation Index and
the Spatial Approach is that the former considers an isolated individual as
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perfectly integrated, while the latter does not. An isolated individual has no
interactions with other individuals of same race and therefore his SSI is zero.
In the spatial approach an isolated individual implies that the probability
of location in that point is positive: since there are no other individuals
located around that point, the probability of location for that particular
racial group is very close to one, therefore the individual will be segregated.
Furthermore, the spatial approach is easily extended to continuous variables
while the Spectral Segregation Index is designed for categorical variables
only.

I borrow several concepts and results from the literature on point pro-
cesses.3,4 In particular, this paper is related to Diggle et al. (2005), which
study the clustering of bovine tuberculosis in Cornwall. They assume that the
cases of different types of tuberculosis follow a multivariate inhomogeneous
poisson process and compute conditional probabilities of a specific type of
disease at a specific location. Their definition of segregation is similar to the
one contained in this paper, but the conditional probabilities are computed
taking into account the control cases, i.e. bovines which did not developed
any form of tuberculosis.5,6

The use of spatial techniques in economics is very recent. Arbia et al.
(2008) apply techniques from spatial statistics to the analysis of firms’ lo-
cation. Quah and Simpson (2003) empirically test an economic model of
location of economic activity using spatial processes that exhibit clustering.
While the statistical techniques used in these papers are similar to the ones
I propose, they do not rely on synthetic indices to analyze the clustering of
the spatial process.

3See Diggle (2003), Moller and Waagepetersen (2004),Stoyan et al. (1987) and Stoyan
and Stoyan (1994) for excellent introductions to the theory and some applications.

4Statistical models of point patterns are used in spatial epidemiology (Diggle et al.
(2005), Kelsall and Diggle (1998)), Neuroscience (Diggle et al. (2006)), Astrophysics, Ecol-
ogy, Geology (Zhuang et al. (2006)) and Image Recognition.

5In their model there are four types of tubercolosis and there is also a control group,
i.e. locations in which there is an animal not infected by the disease. We don‘t have to
model the control group in our application.

6They provide a test for detection of segregation based on Monte Carlo simulation.
However, their test is not particulary useful in the present context. indeed, in a segregation
study the researcher is interested in comparing segregation levels among cities, therefore
testing if, say, New York is more segregated than Chicago.
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2. Motivation and Practical Implementation

Residential separation by race is a common feature observed in the ma-
jority of US metropolitan areas. Several studies show that racial segregation
undermines the socioeconomic performance of African Americans in educa-
tion, unemployment, earnings and single motherhood, while the remaining
racial groups are not affected significantly (Massey and Denton (1993); Cutler
and Glaeser (1997)). Similar results hold when the endogeneity of segrega-
tion is accounted for using instrumental variables (Ananat (2011)), when
segregation is measured using alternative segregation indices (Echenique and
Fryer (2007)), and when performance is measured as the black-white test
score gap (Card and Rothstein (2007)).7,8

The majority of the literature measures the level of segregation of (say)
blacks using a synthetic index. The traditional approach consists of the
following steps:

1. Partition the city in K neighborhoods

2. For each neighborhood k, compute the share of blacks Bk/Pk, where
Pk is the number of individuals and Bk the number of blacks in neigh-
borhood k.

3. Choose a distance function to measure the difference among the ac-
tual spatial distribution (B1/P1, ..., BK/PK) and the distribution aris-
ing when there is no segregation (B/P, ..., B/P ). The most popular
segregation measure, the dissimilarity index, is based on the absolute
deviation, |Bk/Pk −B/P |.

4. Compute the neighborhood-level segregation, using an appropriate nor-
malization that insures the aggregate index assumes values between 0
and 1. For the dissimilarity index each neighborhood has segregation

φk =
|Bk/Pk −B/P |

2 (B/P ) (1−B/P )

5. Compute the average segregation of the city

7Collins and Margo (2000) suggest that the negative impact of residential segregation
on African Americans outcomes is relatively recent, starting from 1980.

8Recently Alesina and Zhuravskaya (2011) constructed measures of segregation at the
country level. Their results show that countries with high ethnic and linguistic segregation
have a lower quality of government.
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D =
1

P

K∑
k=1

Pkφk (1)

The index measures the proportion of blacks that should change neighbor-
hood in order to achieve a perfectly integrated city. An alternative interpre-
tation is the mean deviation from uniform spatial distribution, where each
neighborhood’s segregation is weighted according to the population propor-
tions Pk/P .

While this approach is suitable for the measurement of segregation in
other contexts (employment segregation, school segregation), it has some
drawbacks when applied to residential segregation, where the spatial element
should be considered explicitly. First, the index is based on an arbitrary par-
tition of the metropolitan area in neighborhoods (as argued by Echenique
and Fryer (2007)), making the measurement directly dependent on the spe-
cific partition adopted. Figure 1 presents four stylized cities with the same
spatial distribution of racial groups, but a different partition in neighbor-
hoods. If segregation is measured using the standard dissimilarity, city A
and C are perfectly segregated, city B is perfectly integrated and city D has
an intermediate level of segregation. However, the spatial distribution of the
racial groups in the four cities is equivalent: the difference in the measured
segregation is the result of different partitions.

Second, if we compute the index of segregation using different levels of
aggregation of the data (tracts, block groups or blocks) we will observe dif-
ferent values and different ranking of the cities, a problem known in spatial
analysis as Modifiable Area Unit Problem (MAUP). In Figure 1, the neigh-
borhoods in city A are obtained by partitioning each of the neighborhoods
in city B in four sub-areas of the same size. This results in a dissimilarity of
1 in city A and 0 in city B.

Third, many traditional segregation indices do not take into account the
spatial location of individuals over the urban area, thus completely ignoring
the within-neighborhood variation in segregation. The dissimilarity index
assigns the same segregation level φk to all individuals living in the same
neighborhood. However, the black individual located at (4,5) is surrounded
by 8 blacks, while the black individual in (3,3) has 5 white neighbors and
3 black neighbors: an index of segregation should consider the former more
segregated than the latter.

If segregation is defined as a function of individual locations, without re-
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Figure 1: Different partitions imply different segregation levels
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Four stylized cities. Black dots represent the locations of blacks, white dots the locations of whites. The
four cities have the same spatial distribution of racial groups. However, when segregation is measured using
the neighborhood-based approach, the different partitions in neighborhoods deliver different segregation
levels as measured by the dissimilarity index. City A has a dissimilarity DA = 1, while City B has
no segregation DB = 0, since each neighborhood contains the same proportion of blacks and whites.
Segregation is complete in City C, DC = 1, and intermediate in City D, DD = .2291.

lying on an arbitrary partition in neighborhoods, all these critiques do not
apply. This is the main motivation of the present work.

The approach proposed in this paper consists of estimating a spatial den-
sity for each racial group, which is compared to the spatial distribution under
no segregation. When racial groups do not segregated the probability of lo-
cation of each racial group is constant over the metropolitan area and the
spatial density is flat.

Assume that the researcher has location data xi for each individual i
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in the metropolitan area. The spatial approach consists of the following
steps:

1. Choose a kernel estimator function Kh (u) = K (u/h) /h2, where K(·)
is a given density function. Compute the optimal bandwidth h for
the kernel estimator as the minimizer of the Mean Squared Error in
formula (17). In this paper, I use a multiplicative quartic kernel,
K(u) = k(u1)k(u2), for u = (u1, u2).

2. For each individual location xi, compute the intensity of the spatial
pattern for blacks λb (xi) and for the entire population λ0 (xi)

λ̂b (xi) =
n∑
j=1

Kh (xi − xj) 1{m(xj)=b}∫
S Kh (ξ − xi) dξ

(2)

λ̂0 (xi) =
n∑
j=1

Kh (xi − xj)∫
S Kh (ξ − xi) dξ

(3)

where 1m(xi)=b is an indicator variable which assumes value 1 if the

individual at location xi is black. The estimated intensity λ̂b (xi) can
be interpreted as the expected number of blacks living in xi, while
λ̂0 (xi) is the expected number of residents in xi.

3. Compute the probability of black location at xi as

ρ̂b (xi) =
λ̂b (xi)

λ̂0 (xi)
(4)

and the probability of black location when there is no segregation, as
the proportion of blacks in the population ρb = B/P

4. Choose a distance function to measure the difference among the actual
spatial distribution ρ̂b (·) and the spatial distribution under no segrega-
tion ρb. The distance function associated with the spatial dissimilarity
is the absolute deviation, |ρ̂b (xi)− ρb|.

5. Compute the estimated segregation index φ̂ (xi) for each observed lo-
cation xi. For the spatial dissimilarity we use formula (12)

φ̂ (xi) =
|ρ̂b (xi)− ρb|
2ρb (1− ρb)

(5)
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6. Compute the estimated global index T̂D (X) as the average individual
index. The global spatial dissimilarity is thus

T̂D (X) =
1

n

n∑
i=1

φ̂ (xi)

where n is the number of individuals in the city.

The traditional approach imposes a restriction on the individual level segre-
gation, i.e.

φi = φk for all i living in neighborhood k

Therefore the traditional dissimilarity assumes no intra-neighborhood vari-
ation of spatial segregation. The approach presented here does not impose
such a restriction and explicitly considers the spatial distribution of racial
groups within neighborhoods.

The computational burden of the spatial approach is minimal, since the
kernel estimation procedure is fully automated in standard statistical soft-
ware for point pattern analysis. An example with instruction for the installa-
tion of packages and code for estimation of the segregation levels is available
at https://jshare.johnshopkins.edu/amele1/research.html.9

3. Spatial Point Processes and Segregation

3.1. Notation, Basic Properties and Definitions

A spatial point process X is a stochastic process that maps points over
a set S ⊆ R2.10,11 I denote the random set of locations as X = {x1, ..., xn},
where xi denotes the generic point of the process. The random variable N (A)
indicates the number of points in a bounded set A ⊆ S. I denote realizations
of X as x and the realizations of N as n. I write ξ or η to indicate a generic

9I use the packages splancs, spatstat and spatialkernel for the statistical software
R. The kernel estimation is accelerated through fast C and Fortran 90 codes that decrease
the computational burden even further. A modified version of spatialkernel is contained
in the web example.

10Alternatively it can be defined as a random counting measure over bounded setsA ⊆ S.
See Conley (1999) for a more technical explanation of point processes in the context of
spatial GMM.

11Diggle (2003), Stoyan et al. (1987), Stoyan and Stoyan (1994), Moller and
Waagepetersen (2004) are basic references.
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point (coordinate) in S and xi for the generic realized point of the process.
The area of region A is |A| and dξ refers to the infinitesimal region containing
ξ.

I consider only finite spatial processes, with realizations x in the set N1f =
{x ⊆ S : n (x ∩ A) <∞}, for any bounded A ⊆ S. A spatial point process is
stationary if all the probability statements about the process in any bounded
set A ⊆ S are invariant under arbitrary translations. This implies that all
the statistics are invariant under translation, e.g. EN (A) = ENp (A), where
Np (A) is the processX translated by the vector p. A point process is isotropic
if the invariance holds under arbitrary rotations. The process is simple (or
orderly) if there are no coincident points. In this paper I consider simple
nonstationary and anisotropic processes.

Let X be a spatial point process defined over S ⊆ R2. The intensity
function of the process is a locally integrable function12 λ : S → [0,∞),
defined as the limit of the expected number of points per infinitesimal area

λ (ξ) = lim
|dξ|→0

{
E [N (dξ)]

|dξ|

}
(6)

A stationary process has constant intensity λ (ξ) = λ for all ξ. The intensity
measure of a point process X is defined for A ⊆ S as

Λ (A) = EN (A) =

∫
A

λ (ξ) dξ (7)

and measures the expected number of points of the process in the set A.

3.2. Measuring Segregation

Consider a spatial pattern X = {xi,m (xi)}ni=1 characterized by the loca-
tions xi’s in the city S and marks m (xi). The mark attached to a location
is a random variable describing the characteristics of an individual living at
xi. The mark could indicate the racial group, income group, income level,
education level of the individual located at xi.

I assume that the locations of individuals X0 are the realization of an
Inhomogeneous Spatial Poisson Point Process over the metropolitan area
S ⊆ R2 with intensity function λ0 (ξ)

12A function is locally integrable if
∫
A

λ (ξ) dξ <∞ for all bounded A ⊆ S
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ASSUMPTION 1. The individual locations X0 follow an Inhomogeneous
Poisson Process with intensity λ0 (ξ) over S

X0 ∼ Poi (S, λ0 (ξ))

This assumption provides a simple but flexible model for the spatial distri-
bution of households in the urban area.13 The spatial process generates ex-
ogenous clustering of residential locations, depending on the functional form
of the intensity function. Assumption 1 does not impose any behavioral or
equilibrium restriction on how people choose their residential locations.

The second assumption concerns the interaction among marks: I assume
that conditional on the realized locations, the marks are independent.

ASSUMPTION 2. Conditional on X0, the marks are mutually indepen-
dent

As a consequence the presence of a specific attribute at a specific location
does not influence the presence of same attributes at other locations. It is
important to notice that this assumption does not rule out spatial clustering
of marks.

Let ρ (ξ,m,X0�ξ) ≡ P (m (ξ) = m|X0) be the probability that an indi-
vidual located at ξ has mark m, conditional on the locations X0. The third
assumption states that the probability distribution of a mark is location-
specific and does not depend on the entire realization x of the process. I
assume that this conditional probability depends on the location ξ, but it
does not depend on the locations of the other points of the process X0 \ ξ.

ASSUMPTION 3. For all ξ ∈ X0, for all m ∈M

ρ (ξ,m,X0 \ ξ) = ρ (ξ,m)

13The Inhomogeneous Spatial Poisson process is a nonstationary spatial process such
that

1. for any bounded region A ⊆ S

P [N0 (A) = n] = [Λ0 (A)]
n exp [−Λ0 (A)]

n!
, n = 0, 1, 2, ....

2. for any bounded region A ⊆ S , conditional on N0 (A) = n the locations are i.i.d.
with density

f (ξ) =
λ0 (ξ)∫

A
λ0 (ξ) dξ
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Assumptions 2 and 3 imply that the probability that an household has a cer-
tain characteristic is not affected by the location or attributes of any other
household. Marks are independent conditioning on the realized locations, but
they are not identically distributed at each point. Each location faces a dif-
ferent mark distribution and clustering can occur exogenously according to
the functional form of the intensity function and the mark distribution.

The process X defined according to Assumptions 1 to 3, is called a Marked
Spatial Poisson Process. I will focus on the case of discrete marks, which is
the appropriate framework for racial segregation. The extension of definitions
and theorems to the continuous or multivariate case are straightforward, and
shown in Appendix.

The definition of segregated spatial distribution is operationalized using
the conditional mark distributions. There is no segregation when the condi-
tional probability of each attribute/mark does not vary over S: ρm (ξ) = ρm
for all ξ. Such a process is said to exhibit random labeling.14 Therefore the
marked poisson process is completely unsegregated if there is random label-
ing of the locations. The maximum level of segregation is reached when the
conditional mark distribution is degenerate: for each point of the process
there is a mark occurring with probability one at that location, while the
remaining marks occur with probability zero.15

DEFINITION 1. Assume that the process X satisfies Assumptions 1-3.
Then:

1. The marked point process X is completely unsegregated if and only if the
conditional mark distribution follows random labeling, i.e. ρm (ξ) = ρm
for all individuals ξ ∈ X0 and for all racial groups m ∈M.

2. The marked point process X is completely segregated if and only if for
each individual location ξ ∈ X0, there is a racial group m∗ ∈ M such
that ρm∗ (ξ) = 1 and ρm (ξ) = 0 for any other racial group m 6= m∗.

An index of segregation measures the level of spatial clustering of the marked
point process. I focus on indices measuring the difference between the actual
spatial distribution of racial groups and the distribution arising under no

14See Moller and Waagepetersen (2004) for examples.
15See Diggle et al. (2005) for a similar definition. The same idea is proposed in Arbia

et al. (2008).
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segregation. To have comparability across cities the index is normalized
to assume values between 0 and 1, where zero corresponds to the case of no
segregation and one to the maximum level of segregation. The index increases
with the difference between the distributions ρm (ξ) and ρm: different notions
of distances between distribution will result in different indices.

Define N1m to be the set of all the possible realizations of the marked
point process.

DEFINITION 2. A segregation index is a function T : N1m → [0, 1] such
that

1. T (X) = 1 iff X is completely segregated

2. T (X) = 0 iff X is completely unsegregated (integrated)

3. T (X) is increasing in the difference between the conditional distribu-
tions ρm (ξ) and ρm.

If the process X satisfies Assumptions 1-3 it is possible to derive the un-
conditional moments of any index T (X) (see Appendix). I specialize the
framework and impose another restriction often requested in the literature.
I focus on indices that satisfy additivity : the segregation level of the city is
the sum of individual level segregation. Additivity is very common in the
literature on segregation, since it allows the researcher to determine which
components provide higher contributions to the global level of segregation.
Many of the traditional indices are indeed additive at the neighborhood level.

I focus on indices computed conditionally on the realization N (S) = n.
I define an individual or location-dependent segregation function φ (ξ),

summarizing the difference between ρm (ξ) and ρm at ξ, and a global seg-
regation index that aggregates the individual-level indices at the city level.
The global index is computed as average of the normalized individual-level
segregation indices.

ASSUMPTION 4. Assume the global index T (X) is the average of the
individual indices φ (ξ), conditional on N (S) = n

T (X) =
1

n

∑
ξ∈X0

φ (ξ) (A4)

where φ : S → R+ is a location-specific segregation index.
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The function φ maps the location into the segregation level of the individual.
I provide examples of possible functional forms for φ below. The general
distributional results are summarized in Appendix. Most of the existing
indices can be adapted to this approach by redefining the neighborhoods as
individuals.

The construction of the index requires the choice of a distance function for
measuring the difference between spatial distributions. Two popular choices
are the absolute deviation

d (ξ) =
∑
m∈M

|ρm (ξ)− ρm| (8)

and the squared deviation

d (ξ) =
∑
m∈M

[ρm (ξ)− ρm]2 (9)

The following proposition provides the value of (E.1) and (E.4) when there
is complete segregation. Let ξs be a generic point of a completely segregated
spatial point process.

PROPOSITION 1. The value of (8) under complete segregation is

d (ξs) = 2
∑
m∈M

ρm (1− ρm) (10)

The value of (9) under complete segregation is

d (ξs) =
∑
m∈M

ρm (1− ρm) (11)

Proof. In Appendix C.

Incidentally notice that d (ξs) is a linear function of the fractionalization of
the city, as defined below in (E.10).

Using the absolute deviation we can The location-based dissimilarity in-
dex is

φD (ξ) =

∑
m∈M |ρm (ξ)− ρm|

2
∑

m∈M ρm (1− ρm)
(12)

and the global Spatial Dissimilarity Index is

TD (X) =
1

n

∑
ξ∈X0

φD (ξ) (13)
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In the traditional neighborhood-based dissimilarity the conditional probabil-
ity ρm (ξ) is assumed to be the same for all locations in the same neighbor-
hood, while the spatial dissimilarity does not impose such within-neighborhood
restriction on the spatial segregation.
Using the same approach we can derive several indices of segregation, sum-

marized in Table 1 and described in detail in Appendix.

3.3. Discussion

In principle, one could estimate the spatial density without the assump-
tions on the spatial process. The probability of location of an individual can
be estimated using a simple kernel estimator. However, when the exact loca-
tion data of the individuals are unavailable, the Poisson assumption allows
estimation using simple kernel regression methods. Without this assump-
tion, the researcher should rely on more computationally intensive simulation
methods.

The class of Marked Markov Pairwise Interaction models is a valid al-
ternative to the spatial poisson process.16 These models assume that the
probability of location of an individual with a specific mark, depends on
the location of other individuals with the same mark. The degree of spatial
correlation among locations is driven by the interaction parameter, which
measures the degree of attraction among individuals of the same race. These
statistical models incorporate the idea of endogenous clustering, but are much
harder to estimate. The literature on spatial statistics has developed approx-
imate methods for estimation, i.e. maximum pseudolikelihood, monte carlo
maximum likelihood and markov chain monte carlo simulations. However,
these techniques are very expensive from a computational point of view.
The assumption of Poisson process is convenient, since it allows clustering
of individuals without significant increase in the computational burden for
estimation.

Finally, I use the average individual segregation as proxy for the segrega-
tion of the metropolitan area. However, the average is not robust to outliers,
i.e. individuals that are highly segregated. In the empirical application, I
provide evidence that high level of segregation are the results of such out-

16See Moller and Waagepetersen (2004) or Diggle (2003) for a simple description of these
models.
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liers pulling the segregation towards 1. I also consider using a more robust
alternative to the average segregation, such as the median segregation.

4. Estimation Strategy

4.1. Estimation with exact location data

I estimate segregation levels using nonparametric methods borrowed from
spatial statistics. If the researcher has access to exact individual location
data, the estimation of the intensity function is straightforward.17 Lemma 2
in Appendix B proves that the a spatial process satisfying Assumptions 1-3
is equivalent to a multivariate Poisson process with independent univariate
processes. As a consequence, I can estimate the intensity functions of each
racial group independently. This observation leads to a convenient estimate
of ρ̂m (ξ)

ρ̂m (ξ) =
λ̂m (ξ)

λ̂0 (ξ)
(14)

where λ̂m (ξ) is the estimate of the intensity function for the process Xm, cor-
responding to the spatial process for group m. Diggle (1985) and Berman and
Diggle (1989) suggested a nonparametric estimator based on the definition

of intensity function, λ̃ (ξ) = N (ξ, h) /πh2, where N (ξ, h) is the number of
points within distance h from ξ. The estimator counts the points within the
disc of radius h and centered in ξ, dividing by the area of the disc πh2.18 More
generally one can weight the points using a Kernel function, which leads to
estimators of the form (see Diggle (2003) p.148 or Moller and Waagepetersen

17See Diggle (2003), Diggle et al. (2005).
18This can be interpreted as a kernel estimator in which the kernel function is

k (u) =

{
1
πu2 if 0 ≤ u ≤ 1
0 otherwise

18



(2004))19

λ̂ (ξ) =
n∑
i=1

Kh (ξ − xi)∫
S Kh (ξ − xi) dξ

(15)

where Kh (u) = 1
h2
K (u/h). In the application, I will use a multiplicative

quartic kernel. I also use a gaussian kernel, with virtually no difference in
estimated probabilities, but substantial increase in the computational time.

The spatial approach allows direct estimation of the optimal neighbor-
hood size, since the estimation procedure requires the computation of an
optimal kernel bandwidth h. In principle h assumes different values in each
city, because it takes into account the geographic density. The bandwidth
h can be interpreted as defining the relevant neighborhood for the individ-
ual (the local environment, in the words of Reardon and O’Sullivan (2004)),
which is possibly different for each metropolitan area.

I choose h using the Mean Square Error (MSE) minimization procedure
suggested in Diggle (1985) and Berman and Diggle (1989). The assumption
is that the underlying process is a stationary isotropic Cox point process with
rate process Λ(ξ).20 The optimal bandwidth h minimizes

MSE(h) = EΛ,N

{[
λ̃ (ξ)− Λ (ξ)

]2
}

(16)

where the expectation is taken with respect to the process governing Λ and
the point process conditioning on Λ’s realization. It can be shown that
MSE (h) can be rewritten as21

MSE (h) = µ
1− 2µK (h)

πh2
+
(
πh2
)−2
∫ ∫

µ2 (‖ξ − η‖) dηdξ (17)

19There are alternative ways to estimate the conditional mark probability. For exam-
ple, Diggle et al. (2005) exploit the fact that conditioning on the realized n, the mark
distribution is a multinomial distribution and can be estimated through kernel regression.
Alternative smoothing techniques can be used. For example, the method of total variation
regularization proposed in Koenker and Mizera (2004).

20A Cox Process is a point process such that: 1) The rate process
{

Λ (ξ) : ξ ∈ R2
}

is a non-negative-valued stochastic process; 2) Conditional on the realization{
Λ (ξ) = λ (ξ) : ξ ∈ R2

}
, the point process follows an Inhomogeneous Poisson Point pro-

cess with intensity λ (ξ).
21This is a simple method of computing the optimal bandwidth. An alternative method

is described in Diggle et al. (2005).

19



with µ = E [Λ(ξ)]; the term µ2 (‖ξ − η‖) is the second-order intensity, de-
fined as µ2(u) = γ(u) − µ2, where γ(u) = E [Λ(ξ)Λ(η)] is the covariance of
the rate process Λ(ξ). The quantity K (h) is

K (h) = λ−1E [No (h)] = 2πλ−2

∫ h

0

µ (ξ) ξdξ (18)

which measures the expected number of further points in the circle of radius
h and center ξ. I estimate K (h) with the Ripley’s estimator: define w (ξ, u)
as the proportion of the circumference of the circle with center ξ and radius
u, which lies in S, and wij = w (xi, uij), where uij = ‖xi − xj‖ .

K̂ (h) =
1

n (n− 1)
|S|

n∑
i=1

∑
j 6=i

w−1
ij Ih (uij) (19)

where Ih (uij) = I (uij ≤ h) is an indicator function. This gives edge-corrected
estimates of the K(h) function. The integral in (17) is estimated using the
weighted integral suggested by Berman and Diggle (1989). These estimates

are plugged in (17) to obtain an estimated M̂SE (h). The optimal h is the

minimizer of M̂SE (h).
As a practical matter, when estimating the conditional probability, I use

the same bandwidth for λ̂m (ξ) and λ̂0 (ξ), to avoid probabilities greater than
one or conditional probabilities not summing up to one. In Appendix D, I
apply the estimation procedure to artificial data.

4.2. Estimation with block level data

In many empirical applications, the exact location data are not available.
Therefore, I develop an approximated estimation technique to deal with data
at the block level. I assume the data contain the number of individuals of
each racial group in each block, and the location of the block centroid. This
is the case in my empirical application.

The metropolitan area S is partitioned in K disjoint blocks, S =
K⋃
k=1

Sk
and Sk ∩ Sl = ∅, for k 6= l. By the independent scattering property of the
inhomogeneous poisson process the number of points of the process N0 (Sk)
and N0 (Sl) over disjoint regions Sk and Sl are independent (see Appendix
B.1 for a proof). The definition of intensity measure implies that EN0 (Sk) =

20



∫
Sk
λ0 (ξ) dξ, for any k. One can model the number of points as

N0 (Sk) =

∫
Sk
λ0 (ξ) dξ + uk

where uk is an error with mean zero, and independent across blocks. For any
block k there exists a ξk ∈ Sk such that

∫
Sk
λ0 (ξ) dξ = λ0

(
ξk
)
|Sk| and thus

N0 (Sk) = λ0

(
ξk
)
|Sk|+ uk (20)

Notice that ξk is not necessarily the centroid of the block. An approximation
of (20) for any ξ ∈ Sk is N0 (Sk) ≈ λ0 (ξ) |Sk|+ uk.

The expected number of points in Sk is then approximated as

E [N0 (Sk)| ξ] ≈ λ0 (ξ) |Sk|

and thus the function λ0 (ξ) |Sk| can be estimated through kernel regression
as

λ̂0 (ξ) |Sk| =
K∑
k=1

Kh (ξ − xk)∑K
j=1Kh (ξ − xj)

n0k (21)

where xk’s are the centroids of the census blocks and n0k the number of
individuals observed in each block. Applying this procedure to each racial
group process we can then estimate λ̂m (ξ) |Sk| for each m.

Taking the ratio λ̂m(ξ)|Sk|
λ̂0(ξ)|Sk|

we get the estimator for ρ̂m (ξ)

ρ̂m (ξ) =
λ̂m (ξ)

λ̂0 (ξ)
=

∑K
k=1Kh (ξ − xk)nmk∑K
k=1Kh (ξ − xk)n0k

(22)

where n0k is the number of people living in block k and nmk is the number
of people belonging to race m living in block k. To estimate the index of
segregation, I evaluate the estimated conditional probabilities at the block
centroid.

4.3. Data

I apply this approach to census data from the 1990 and 2000 US Census
of Population and Housing. The ideal dataset would consist of individual or
household level data on location, racial group and socioeconomic character-
istics. Unfortunately such data are not publicly available for confidentiality
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reasons.22 A possible alternative is the 1% PUMS 1930 Census, where each
household’s address is reported. However, there are concerns about the spa-
tial randomness of this sample and the geocoding of historical addresses,
therefore I prefer to not use these data.

As a necessary compromise between estimation precision and reliability of
data, I use the most disaggregated data publicly available: census block data
containing the location of the block centroid and the racial composition. In
Appendix D I illustrate the methodology using exact locations from artificial
datasets.

I have data for all the 331 MSA’s (Metropolitan Statistical Areas) and

Figure 2: Segregation in New York City, PMSA

Each dot represents a block centroid. On the left figure, a black dot is a block where the majority of
residents is African American, while a red dot indicates a block with a majority of non-blacks. On the
right picture, red indicates Whites/Caucasians, black indicates African Americans, green indicates Asians,
and light blue indicates Other racial groups (including Hispanics).

PMSA’s (Primary Metropolitan Statistical Areas) for years 1990 and 2000.
To maintain comparability across census years, I adopt the racial categories
in Census 1990: Whites/Caucasians, African Americans, Asian/Pacific Is-
landers, Native American, Other.

22I am in contact with the Census Bureau to gain access to such data.
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The left panel of Figure 2 plots all the blocks centroids of New York in
2000: the black dots represent blocks in which the majority is black while
red dots are blocks with a majority of non-blacks. The pattern of geographic
separation is evident: African Americans are concentrated in Harlem, Bronx
and Bedford-Stuyvesant. The right panel of Figure 2 plots all racial groups:
black points are African Americans, red points are Whites, green are Asians
and light blue correspond to Other racial groups (including Hispanics). 23

5. Results

5.1. Descriptive results

The estimates for the spatial distribution of segregation in New York
are shown in Figure 3 and 4. In Figure 3, the left panel shows the spa-
tial dissimilarity for African Americans, while the right panel displays the
spatial exposure. The areas with higher segregation correspond to Bedford-
Stuyvesant, Harlem and Bronx.

One of the most striking features of Figure 3 is that most areas show
moderate levels of racial segregation. This is the case for most metropolitan
areas in the sample: the individual segregation distribution is very skewed
and very few areas present extreme levels of segregation. The average new
yorker has spatial dissimilarity of 0.6903519, with a median of 0.6423153.
The spatial exposure index in the right panel shows a similar pattern. The
results for multigroup segregation in Figure 4 are virtually identical, with
few areas showing unusual segregation levels.

The metropolitan area segregation levels estimated using the spatial ap-
proach are different from those estimated with the traditional approach. In
Table 2, I present the estimated segregation levels for several metropolitan
areas.24 I compare the spatial dissimilarity with the traditional dissimilarity,
the latter estimated using both census tracts and blocks. Panel A and B
show the ten most and least segregated MSAs respectively. Panel C shows
the results for the most populated MSAs.

The spatial approach provides a different picture of segregation levels
in US cities than the traditional approach, both in levels and rankings. For
example, Muncie (IN) and Beaumont (TX) have drastically different lev-
els of segregation, when using the traditional approach vis-a-vis the spatial

23Other metropolitan areas are available from the author.
24The results for all metropolitan areas are available in excel format from the author.
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Figure 3: Estimated African American segregation in New York PMSA, 2000

Estimated spatial dissimilarity (left panel) and spatial exposure (right panel) for African Americans in
New York.

approach. Figure 5 plots the spatial dissimilarity and the neighborhood-
based dissimilarity (computed using census tracts). Each point represents
a metropolitan area, indicated with the MSA FIPS code. Spatial dissimi-
larity is positively associated with the traditional dissimilarity, as expected.
However the measured levels of segregation in many metropolitan areas are
strikingly different when we compare the two methodologies. For example,
the metropolitan area of Muncie (IN), with MSA FIPS code 5280 in the
figure, has a dissimilarity of 0.7022 while the spatial dissimilarity is 0.8785.
Furthermore, the spatial dissimilarity implies a different ranking of cities
in terms of racial segregation: Muncie (IN) is indeed the most segregated
metropolitan area according to the spatial approach, while using the tradi-
tional approach it was 141st. Table 4 shows evidence that while aggregate
(average) segregation could be high in some metropolitan areas, most of the
individuals are exposed to moderate levels of spatial separation. For exam-
ple, the high levels of segregation in Los Angeles depend on very few areas
with quite unusually high segregation: 75% of the population is exposed to
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Figure 4: Estimated multigroup segregation in New York PMSA, 2000

Estimated spatial dissimilarity (left panel) and spatial exposure (right panel) for all racial groups in New
York.

segregation levels below 0.55, while the average of the index is 0.61.25

5.2. Segregation and Outcomes

In this section, I explore the economic implications of the spatial ap-
proach. I study the effect of racial segregation on individual outcomes, com-
paring results using the traditional index and the spatial index. I focus on
three outcomes, also studied by Cutler and Glaeser (1997): high school grad-
uation, college graduation and idleness.

Table 6 shows some preliminary evidence of the relationship between seg-
regation and outcomes. I present estimates of linear probability models as
in Cutler and Glaeser (1997); probit and logit estimates provide the same
qualitative results. The estimates focus on the sample of 25-30 years old
individuals from the 1% PUMS 1990.26

25A previous version of the paper contains more details about the individual distribution
of segregation.

26The sample selection follows the same procedure as in Cutler and Glaeser (1997)
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Table 2: Spatial Dissimilarity vs Traditional Dissimilarity (African Americans)

MSA Metropolitan Area Spatial Dissimilarity Dissimilarity
FIPS Dissimilarity (Blocks) (Tracts)

Levels Rank Levels Rank Levels Rank

A. Most segregated MSAs in US

5280 Muncie, IN MSA 0.8785051 1 0.7022 141 0.5282 150
2960 Gary, IN PMSA 0.8747661 2 0.8602 4 0.8093 2
2160 Detroit, MI PMSA 0.8701484 3 0.8655 3 0.8405 1
8080 Steubenville–Weirton, OH–WV MSA 0.848863 4 0.7648 58 0.6256 60
6960 Saginaw–Bay City–Midland, MI MSA 0.8471904 5 0.8123 19 0.7334 12
1320 Canton–Massillon, OH MSA 0.8457054 6 0.738 89 0.5774 99
2640 Flint, MI PMSA 0.8411021 7 0.8268 11 0.7646 6
1000 Birmingham, AL MSA 0.8389853 8 0.8157 17 0.6989 20
840 Beaumont–Port Arthur, TX MSA 0.8273058 9 0.7513 74 0.6481 47
5200 Monroe, LA MSA 0.8263328 10 0.8082 22 0.69 27

B. Least segregated MSAs in US

6560 Pueblo, CO MSA 0.4168497 322 0.6532 217 0.4069 261
7160 Salt Lake City–Ogden, UT MSA 0.415838 323 0.6598 209 0.4249 243
8735 Ventura, CA PMSA 0.4148834 324 0.5457 305 0.3695 286
1125 Boulder–Longmont, CO PMSA 0.4105108 325 0.6155 261 0.3239 311
7480 St Barbara–St Maria–Lompoc, CA MSA 0.4095207 326 0.5629 295 0.3894 271
5170 Modesto, CA MSA 0.394449 327 0.572 291 0.3212 313
200 Albuquerque, NM MSA 0.3794953 328 0.5505 303 0.312 319
380 Anchorage, AK MSA 0.3729775 329 0.4489 328 0.3336 308
5945 Orange County, CA PMSA 0.3686204 330 0.5072 318 0.3391 305
7400 San Jose, CA PMSA 0.3256682 331 0.4817 323 0.2939 325

C. Most populated MSAs in US

4480 Los Angeles–Long Beach, CA PMSA 0.6148579 177 0.6266 252 0.5765 102
5600 New York, NY PMSA 0.6903519 97 0.7013 142 0.6714 38
1600 Chicago, IL PMSA 0.7632357 35 0.8215 15 0.7789 4
6160 Philadelphia, PA–NJ PMSA 0.7276239 63 0.7565 69 0.6897 28
8840 Washington, DC–MD–VA–WV PMSA 0.651122 144 0.6449 227 0.5958 80
2160 Detroit, MI PMSA 0.8701484 3 0.8655 3 0.8405 1
3360 Houston, TX PMSA 0.7056391 81 0.6578 210 0.5716 106
520 Atlanta, GA MSA 0.6759976 115 0.6949 157 0.6148 66
1920 Dallas, TX PMSA 0.6365489 156 0.628 250 0.5396 133
1120 Boston, MA–NH PMSA 0.6009404 191 0.7084 132 0.6364 54

Spatial Dissimilarity is the average of the individual spatial dissimilarity. The traditional dissimilarity is
computed using Census blocks and Census tracts data from the Summary File 1, Census 2000.

In panel A of Table 6, I focus on high school graduation. The impact of
segregation is negative but not statistically significant, when using the tradi-
tional dissimilarity index; while the spatial dissimilarity is highly significant.
In column 3 and 4, I also check if the effect of segregation is different for
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Figure 5: Spatial Dissimilarity vs Traditional Dissimilarity

A. African American Segregation

B. Multigroup Segregation

Each point represents a Metropolitan Statistical Area (MSA). The marker of the points is the MSA FIPS
code. The vertical axis measures the level of spatial dissimilarity and the horizontal axis the level of the
traditional dissimilarity. The latter is computed using census tracts as subunits.
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Table 3: Spatial Dissimilarity vs Traditional Dissimilarity (Multigroup)

MSA Metropolitan Area Spatial Dissimilarity Dissimilarity
FIPS Dissimilarity (Blocks) (Tracts)

Levels Rank Levels Rank Levels Rank

A. Most segregated MSA in US

2620 Flagstaff, AZ–UT MSA 0.8667412 1 0.7093 69 0.5808 38
2160 Detroit, MI PMSA 0.8286439 2 0.8198 2 0.7355 1
8080 Steubenville–Weirton, OH–WV MSA 0.8213511 3 0.7397 38 0.5177 86
1000 Birmingham, AL MSA 0.8187241 4 0.8029 5 0.6661 8
5200 Monroe, LA MSA 0.8163867 5 0.8033 4 0.669 7
5280 Muncie, IN MSA 0.8154988 6 0.6843 105 0.4757 120
1320 Canton–Massillon, OH MSA 0.8072924 7 0.7204 55 0.5089 96
2640 Flint, MI PMSA 0.7960778 8 0.799 6 0.6747 6
840 Beaumont–Port Arthur, TX MSA 0.7901801 9 0.738 41 0.6101 24
760 Baton Rouge, LA MSA 0.7901433 10 0.762 21 0.6113 22

B. Least segregated MSAs in US

1150 Bremerton, WA PMSA 0.3996123 322 0.437 322 0.2669 303
6560 Pueblo, CO MSA 0.3992773 323 0.4754 306 0.2864 293
4150 Lawrence, KS MSA 0.3982949 324 0.4753 307 0.264 306
1720 Colorado Springs, CO MSA 0.3969479 325 0.4575 313 0.3069 280
5170 Modesto, CA MSA 0.3946211 326 0.4457 317 0.2684 301
1880 Corpus Christi, TX MSA 0.3941522 327 0.4337 323 0.2515 311
7840 Spokane, WA MSA 0.3868918 328 0.5592 248 0.2777 298
380 Anchorage, AK MSA 0.354807 329 0.4051 328 0.2643 305
2320 El Paso, TX MSA 0.2795754 330 0.367 330 0.2017 327
4080 Laredo, TX MSA 0.2771601 331 0.3563 331 0.1072 331

C. Most populated MSAs in US

4480 Los Angeles–Long Beach, CA PMSA 0.4834004 270 0.4973 289 0.4091 183
5600 New York, NY PMSA 0.6053643 138 0.6286 183 0.5603 56
1600 Chicago, IL PMSA 0.6563473 90 0.7057 76 0.6141 21
6160 Philadelphia, PA–NJ PMSA 0.6965794 54 0.7306 45 0.6252 16
8840 Washington, DC–MD–VA–WV PMSA 0.5894296 149 0.5949 212 0.5028 100
2160 Detroit, MI PMSA 0.8286439 2 0.8198 2 0.7355 1
3360 Houston, TX PMSA 0.5698989 175 0.5689 237 0.4548 138
520 Atlanta, GA MSA 0.6376615 108 0.6702 126 0.5603 55
1920 Dallas, TX PMSA 0.5586969 188 0.5718 235 0.4478 144
1120 Boston, MA–NH PMSA 0.5336268 220 0.6435 166 0.5215 80

Spatial Dissimilarity is the average of the individual spatial dissimilarity. The traditional dissimilarity is
computed using Census blocks and Census tracts data from the Summary File 1, Census 2000.

African Americans. When using the traditional segregation index, the esti-
mated coefficients imply that segregation harms African Americans, since it
decreases the probability of high school graduation. The estimates using the
spatial dissimilarity have a slightly different interpretation: while segregation
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Table 4: Individual Distribution of Spatial Dissimilarity, Quartiles (African Americans)

MSA FIPS Metropolitan Area Average 1st Quartile Median 3rd Quartile

A. Most Segregated MSAs in US

5280 Muncie, IN MSA 0.8785051 0.4210913 0.536438 0.536438
2960 Gary, IN PMSA 0.8747661 0.59432 0.624964 0.624964
2160 Detroit, MI PMSA 0.8701484 0.6527996 0.6527996 0.6527996
8080 Steubenville–Weirton, OH–WV MSA 0.848863 0.5131925 0.5205587 0.5205587
6960 Saginaw–Bay City–Midland, MI MSA 0.8471904 0.4719803 0.5582634 0.5582634
1320 Canton–Massillon, OH MSA 0.8457054 0.4002332 0.5365979 0.5365979
2640 Flint, MI PMSA 0.8411021 0.531328 0.6290947 0.6315051
1000 Birmingham, AL MSA 0.8389853 0.6466866 0.7176122 1.0913744
840 Beaumont–Port Arthur, TX MSA 0.8273058 0.5746312 0.6678815 1.0368019
5200 Monroe, LA MSA 0.8263328 0.6165972 0.755943 1.2140182

B. Least Segregated MSAs in US

6560 Pueblo, CO MSA 0.4168497 0.198187 0.3978968 0.5100178
7160 Salt Lake City–Ogden, UT MSA 0.415838 0.1909232 0.3650295 0.5057651
8735 Ventura, CA PMSA 0.4148834 0.2094268 0.3707898 0.5103415
1125 Boulder–Longmont, CO PMSA 0.4105108 0.1856612 0.363827 0.504531
7480 Santa Barbara–Santa Maria–Lompoc, CA MSA 0.4095207 0.2085673 0.3972317 0.5123268
5170 Modesto, CA MSA 0.394449 0.2065722 0.3786059 0.5140098
200 Albuquerque, NM MSA 0.3794953 0.1716114 0.3434244 0.5133553
380 Anchorage, AK MSA 0.3729775 0.2025856 0.358544 0.5210976
5945 Orange County, CA PMSA 0.3686204 0.1853323 0.3445561 0.4796011
7400 San Jose, CA PMSA 0.3256682 0.1519909 0.3096957 0.4531364

C. Most Populated MSAs in US

4480 Los Angeles–Long Beach, CA PMSA 0.6148579 0.343943 0.4747065 0.5480155
5600 New York, NY PMSA 0.6903519 0.5258307 0.6423153 0.6737719
1600 Chicago, IL PMSA 0.7632357 0.5528326 0.618727 0.6195102
6160 Philadelphia, PA–NJ PMSA 0.7276239 0.498949 0.6210654 0.6286433
8840 Washington, DC–MD–VA–WV PMSA 0.651122 0.4241205 0.6056744 0.6833271
2160 Detroit, MI PMSA 0.8701484 0.6527996 0.6527996 0.6527996
3360 Houston, TX PMSA 0.7056391 0.4178659 0.55851 0.6096372
520 Atlanta, GA MSA 0.6759976 0.4436585 0.6349907 0.7082935
1920 Dallas, TX PMSA 0.6365489 0.3680504 0.5148539 0.5912919
1120 Boston, MA–NH PMSA 0.6009404 0.3859964 0.504475 0.5383391

The average spatial dissimilarity corresponds to the index of segregation for the entire city. Notice that
the individual-level segregation can be greater than one, while the average is constrained to be between
zero and one for comparability across cities.

harms blacks, it also harms the rest of the population.
The results for college graduation present a similar pattern. Segregation

is not significant when measured using the traditional approach, while it is
negative and highly significant when using the spatial approach. Panel C
shows that for idleness, the estimated relationship between segregation and

29



Table 5: Individual Distribution of Spatial Dissimilarity, Quartiles (Multigroup)

MSA FIPS Metropolitan Area Average 1st Quartile Median 3rd Quartile

A. Most Segregated MSAs in US

2620 Flagstaff, AZ–UT MSA 0.8667412 0.53719981 0.67667898 1.44508612
2160 Detroit, MI PMSA 0.8286439 0.4994092 0.54727524 0.54727524
8080 Steubenville–Weirton, OH–WV MSA 0.8213511 0.09468782 0.10193237 0.10193237
1000 Birmingham, AL MSA 0.8187241 0.57186057 0.64343456 0.94592965
5200 Monroe, LA MSA 0.8163867 0.57393668 0.69740037 1.09410571
5280 Muncie, IN MSA 0.8154988 0.14197748 0.17546687 0.17546687
1320 Canton–Massillon, OH MSA 0.8072924 0.1274268 0.16439563 0.16460785
2640 Flint, MI PMSA 0.7960778 0.37310235 0.44017288 0.4636971
840 Beaumont–Port Arthur, TX MSA 0.7901801 0.53031412 0.61211039 0.95667631
760 Baton Rouge, LA MSA 0.7901433 0.54107325 0.67690541 1.0536933

B. Least Segregated MSAs in US

1150 Bremerton, WA PMSA 0.3996123 0.1176552 0.17211191 0.22281765
6560 Pueblo, CO MSA 0.3992773 0.14755533 0.2813778 0.43960199
4150 Lawrence, KS MSA 0.3982949 0.10488319 0.18351015 0.24649722
1720 Colorado Springs, CO MSA 0.3969479 0.15178639 0.22656594 0.31751936
5170 Modesto, CA MSA 0.3946211 0.19590742 0.31616467 0.47983551
1880 Corpus Christi, TX MSA 0.3941522 0.17305489 0.30298449 0.46049655
7720 Sioux City, IA–NE MSA 0.3868918 0.24153557 0.31525281 0.31525281
380 Anchorage, AK MSA 0.354807 0.15469473 0.26151132 0.36095664
2320 El Paso, TX MSA 0.2795754 0.10509243 0.18472356 0.316258
4080 Laredo, TX MSA 0.2771601 0.07141443 0.1421759 0.2571718

C. Most Populated MSAs in US

4480 Los Angeles–Long Beach, CA PMSA 0.4834004 0.3974564 0.56927795 0.73234758
5600 New York, NY PMSA 0.6053643 0.60649702 0.74460922 0.88614442
1600 Chicago, IL PMSA 0.6563473 0.4863418 0.58390268 0.65356618
6160 Philadelphia, PA–NJ PMSA 0.6965794 0.41789015 0.50060683 0.53834268
8840 Washington, DC–MD–VA–WV PMSA 0.5894296 0.4377141 0.59586204 0.7592566
2160 Detroit, MI PMSA 0.8286439 0.4994092 0.54727524 0.54727524
3360 Houston, TX PMSA 0.5698989 0.41500124 0.55513781 0.70744205
520 Atlanta, GA MSA 0.6376615 0.44326551 0.61122652 0.71895259
1920 Dallas, TX PMSA 0.5586969 0.36111587 0.50142262 0.62570005
1120 Boston, MA–NH PMSA 0.5336268 0.21691148 0.27838146 0.32705205

The average spatial dissimilarity corresponds to the index of segregation for the entire city. Notice that
the individual-level segregation can be greater than one, while the average is constrained to be between
zero and one for comparability across cities.

outcomes using the two approaches has the same qualitative implications.
However the magnitudes of the estimated effects are different.

The general result is that the estimated correlation between segregation
and outcomes is different when using the spatial approach. To provide some
insights, I analyze the differences between traditional and spatial dissimilar-
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Table 6: Segregation and Outcomes

A. High School Graduation

trad spatial trad spatial
Segregation -0.012 -0.086 0.016 -0.068

(0.023) (0.026)*** (0.024) (0.028)**
Segregation * black -0.251 -0.182

(0.045)*** (0.054)***

Observations 139634 139634 139634 139634
R-squared 0.037 0.037 0.037 0.038

B. College Graduation

trad spatial trad spatial
Segregation -0.019 -0.148 -0.014 -0.151

(0.062) (0.066)** (0.067) (0.070)**
Segregation * black -0.05 0.025

(0.051) (0.052)

Observations 139634 139634 139634 139634
R-squared 0.041 0.042 0.041 0.042

C. Idleness

trad spatial trad spatial
Segregation 0.036 0.031 0.005 0.012

(0.025) (0.023) (0.025) (0.023)
Segregation * black 0.271 0.191

(0.039)*** (0.053)***

Observations 139634 139634 139634 139634
R-squared 0.05 0.05 0.051 0.05

* significant at 10; ** significant at 5; *** significant at 1.

Standard errors corrected for clustering at the MSA level in parentheses. The sample contains all 25-30

years old individuals born in US. I consider only the MSAs for which the fiscal variables instruments are

available. Controls included but not shown: fraction of blacks in MSA, dummies for race (black, asian,

hispanic and other nonwhite), dummy for female, age dummies, log of population in MSA, log of median

income in MSA, manufacturing share of MSA. The last three variables are also included interacted with

the black dummy.

ity using regression analysis. In Table F.11, I regress the absolute difference
between traditional and spatial dissimilarity on several metropolitan area
characteristics. The difference decreases with income levels, population and
geographic density; it increases with the fraction of blacks. For the dissim-
ilarity (columns 1-3) the difference increases with the fraction of other race
and the number of tracts, while it decreases with the fraction of workers in
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manufacturing and the fraction of people living in the urban area.
These results indicate that the spatial dissimilarity and the traditional

Table 7: Segregation and Outcomes, Instrumental Variables

A. Individuals 25-30 years old

High School Graduation College Graduation Idleness
trad spatial trad spatial trad spatial

Segregation 0.077 0.129 0.388 0.582 -0.142 -0.184
(0.086) (0.197) (0.185)** (0.503) (0.071)** (0.15)

Segregation * black -0.222 -0.499 -0.305 -0.52 0.399 0.788
(0.130)* (0.333) (0.154)** (0.471) (0.126)*** (0.365)**

Observations 138847 138847 138847 138847 138847 138847

B. Individuals 20-24 years old

High School Graduation College Graduation Idleness
trad spatial trad spatial trad spatial

Segregation 0.142 0.285 0.332 0.473 -0.116 -0.216
(0.091) (0.259) (0.113)*** (0.346) (0.051)** (0.149)

Segregation * black -0.528 -1.086 -0.382 -0.623 0.277 0.975
(0.149)*** (0.517)** (0.101)*** (0.355)* (0.172) (0.387)**

Observations 97338 97338 97338 97338 97338 97338

* significant at 10; ** significant at 5; *** significant at 1.

Standard errors corrected for clustering at the MSA level in parentheses. The sample contains all 25-30

years old (Panel A) and 20-24 years old (Panel B) individuals born in US from the 1% PUMS 1990.

Controls included but not shown: fraction of blacks in MSA, dummies for race (black, asian, hispanic and

other nonwhite), dummy for female, age dummies, log of population in MSA, log of median income in

MSA, manufacturing share of MSA. The last three variables are also included interacted with the black

dummy.

dissimilarity could provide different pictures of the segregation in metropoli-
tan areas with low density and high fraction of blacks. Understanding the
structural reasons of these differences requires a more structural approach
and it is beyond the scope of the present paper.

To further explore the explanatory power of the spatial index, Table F.12
contains a simple exercise. I regress high school graduation on the traditional
dissimilarity, controlling for the spatial dissimilarity. If the spatial dissimi-
larity is not significant, one would conclude that it does not add additional
information to the one already contained in the traditional dissimilarity.

The spatial dissimilarity is significant, therefore suggesting that the spa-
tial approach provides additional information with respect to the traditional
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neighborhood approach. The estimates obtained using the spatial exposure
index confirm the latter result. The spatial index is highly significant in re-
gressions using college graduation as dependent variable.27

The tests reported above are only suggestive. If the additional explana-
tory power of the spatial approach is the result of measurement error, an
instrumental variable approach should correct for the differences estimated
in Table 6. To answer this question, I provide instrumental variables es-
timates of the relationship between segregation and outcomes. I use the
number of intercounty and intracounty rivers in the metropolitan area as
instruments for segregation.28. Rivers provide geographical barriers, divid-
ing the metropolitan area into subunits and creating a natural landscape for
segregation. The more rivers the higher is the expected segregation. The
instrumental variable approach was developed by Hoxby (2000) and used as
instrument for segregation in Cutler and Glaeser (1997). I follow the latter
for the implementation of the IV estimates, including a quadratic term to
control for nonlinearities.

The estimates are contained in Table 7. While there is general accor-
dance in the signs of the effects, most estimates are not significant under
the spatial approach. In Panel A, for individuals aged 25 to 30, the ef-
fect of segregation on education is not significant when using the spatial
approach, while the estimates using the traditional approach imply that seg-
regation decreases the probability of graduation especially for African Amer-
icans. Higher residential segregation increases the probability of being idle
for African Americans, while decreasing it for the rest of the population,
when using the traditional index. The effect of the spatial dissimilarity is
not significant. Similar differences are shown for the sample of individuals
20-24 years old in Panel B. These findings are confirmed in Table 8, where I
compare regressions using the traditional exposure (isolation) and the spatial
exposure indices. The instrumental variable estimates show that the differ-
ences in spatial and traditional coefficients are not due to measurement error
only.

Tables 4 and 5 show that the individual segregation distribution is not
bell-shaped for most cities: few very highly segregated individuals are re-
sponsible for the high average segregation measured in several metropolitan

27However, in the case of idleness, all the coefficients lose significance.
28The data are from Rothstein (2007)
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Table 8: Segregation and Outcomes, Instrumental Variables (Exposure)

A. Individuals 25-30 years old

High School Graduation College Graduation Idleness
trad spatial trad spatial trad spatial

Segregation 0.037 0.172 0.281 0.578 -0.107 -0.213
(0.067) (0.176) (0.143)** (0.43) (0.057)* (0.143)

Segregation * black -0.141 -0.593 -0.193 -0.687 0.277 0.879
(0.099) (0.349)* (0.116)* (0.488) (0.091)*** (0.382)**

Observations 138847 138847 138847 138847 138847 138847

B. Individuals 20-24 years old

High School Graduation College Graduation Idleness
trad spatial trad spatial trad spatial

Segregation 0.073 0.285 0.236 0.401 -0.078 -0.234
(0.071) (0.231) (0.084)*** (0.274) (0.039)** (0.148)

Segregation * black -0.348 -1.176 -0.266 -0.677 0.129 1.066
(0.102)*** (0.536)** (0.069)*** (0.354)* (0.133) (0.416)**

Observations 97338 97338 97338 97338 97338 97338

* significant at 10; ** significant at 5; *** significant at 1.

Standard errors corrected for clustering at the MSA level in parentheses. The sample contains all 25-30

years old (Panel A) and 20-24 years old (Panel B) individuals born in US from the 1% PUMS 1990.

Controls included but not shown: fraction of blacks in MSA, dummies for race (black, asian, hispanic and

other nonwhite), dummy for female, age dummies, log of population in MSA, log of median income in

MSA, manufacturing share of MSA. The last three variables are also included interacted with the black

dummy.

areas. A more robust indicator of segregation at the city level is the median
segregation. The estimated effect of median spatial dissimilarity on outcomes
is reported in Table 9. The results indicate that segregation does not have
any impact on the socioeconomic outcomes analyzed here. In addition to the
previous evidence, this table points to a general non-robustness of the effect
of segregation on outcomes.

In conclusion, the reduced form estimates presented here do not clar-
ify what is the mechanism through which segregation may affect outcomes.
A full fledged structural model would shed some light on the reasons of the
huge discrepancies among the spatial approach and the traditional approach.
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Table 9: Segregation and Outcomes, Median Segregation (IV)

A. Individuals 25-30 years old

High School Graduation College Graduation Idleness
Median Segr -0.438 -0.433 0.749 0.651 -0.509 -0.405

(0.393) (0.391) (0.949) (0.88) (0.442) (0.367)
Median Segr * black 0.764 0.297 -3.497

(1.379) (1.507) (3.847)

Observations 138847 138847 138847 138847 138847 138847

B. Individuals 20-24 years old

High School Graduation College Graduation Idleness
Median Segr -0.588 -0.601 0.813 0.83 -0.12 0.206

(0.57) (0.539) (0.842) (0.812) (0.275) (0.265)
Median Segr * black 3.552 -0.734 -2.318

(3.11) (1.061) (3.092)

Observations 97338 97338 97338 97338 97338 97338

* significant at 10; ** significant at 5; *** significant at 1.

Standard errors corrected for clustering at the MSA level in parentheses. Segregation is measured as the

median segregation level of the metropolitan area. The sample contains all 25-30 years old (Panel A) and

20-24 years old (Panel B) individuals born in US from the 1% PUMS 1990. Controls included but not

shown: fraction of blacks in MSA, dummies for race (black, asian, hispanic and other nonwhite), dummy

for female, age dummies, log of population in MSA, log of median income in MSA, manufacturing share

of MSA. The last three variables are also included interacted with the black dummy.

6. Conclusion

This paper provides new evidence on the effect of residential segregation
on socioeconomic outcomes, using a new family of indices derived from spa-
tial statistics. The proposed index of segregation takes individual locations
and their racial groups as primitives and constructs the entire distribution
of segregation in the metropolitan area. I proxy for the segregation of the
city using the average individual segregation levels. I construct an index of
spatial dissimilarity and an index of spatial exposure.

Using Census data, I compare the spatial approach to the traditional
indices of segregation, showing that there are differences in the measured
segregation. The difference are more pronounced in metropolitan areas with
smaller population, lower population density, higher fraction of blacks and
lower income levels.

I study the effect of segregation on education and idleness, comparing
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the traditional and spatial approach. My results show that the two ap-
proaches provide different results. These differences are not driven by pure
measurement error: I correct for the endogeneity of racial sorting in the city
using instrumental variables (inter- and intracounty rivers in the metropoli-
tan area), finding that the differences among the approaches persist.

Since the individual segregation distribution is not bell-shaped, few very
highly segregated individuals drive the high segregation levels measured in
several metropolitan areas. A more robust indicator of segregation at the
city level is the median segregation. When I use the median individual seg-
regation as a proxy for city-level segregation, the effect of segregation on
outcomes disappears (it is not significant).

This empirical work provides suggestive evidence that reduced-form esti-
mates of the effect of segregation on outcomes are not robust to the spatial
approach. A micro-founded economic model, in which segregation and out-
comes are determined as equilibrium quantities, could help to shed light on
the economic reasons behind these results.
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Appendix A. Background Theory

In this section I briefly review the fundamental concepts and definitions
needed to develop my main theoretical results.29 I provide proofs of some
results in Appendix B. The interested reader can refer to the books listed in
the references for more details, while the reader familiar with spatial Poisson
point processes can skip this appendix.

Appendix A.1. Notation, Basic Properties and Definitions

A spatial point process X is a stochastic mechanism that maps points over
a set S ⊆ R2. Alternatively it can be defined as a random counting measure
over bounded sets A ⊆ S. I denote the random set as X = {x1, ..., xn},
where xi denotes the generic point of the process. The random variable
N (A) indicates the number of points in bounded set A ⊆ S. I denote the
realizations of X as x and the realizations of N as n. I write ξ or η to indicate
a generic point (coordinate) in S and xi for the generic realized point of the
process. The area of region A is |A| and dξ refers to the infinitesimal region
containing ξ.

I consider only finite point processes, with realizations x in the set N1f =
{x ⊆ S : n (x ∩ A) <∞}, for any bounded A ⊆ S. A point process is sta-
tionary if all the probability statements about the process in any bounded set
A of the plane are invariant under arbitrary translations. This implies that
all the statistics are invariant under translation, e.g. EN (A) = ENp (A),
where Np (A) is the process X translated by the vector p. A point pro-
cess is isotropic if the invariance holds under arbitrary rotations. A process
that is stationary and isotropic is called motion-invariant. For convenience
I will also assume that the process is simple (or orderly), i.e that multiple
coincident events cannot occur.

In this paper I consider simple nonstationary and anisotropic processes.

Appendix A.2. First and Second Order Properties

Let X be a spatial point process defined over S ⊆ R2. The intensity
function is a locally integrable function30 λ : S → [0,∞), defined as the
limit of the expected number of points per infinitesimal area

29Diggle (2003), Stoyan, Kendall and Mecke (1987), Stoyan and Stoyan (1994), Moller
and Waagepetersen (2004) are the basic references.

30A function is locally integrable if
∫
A

λ (ξ) dξ <∞ for all bounded A ⊆ S
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λ (ξ) = lim
|dξ|→0

{
E [N (dξ)]

|dξ|

}
(A.1)

A stationary process has constant intensity λ (ξ) = λ for all ξ. The
intensity measure of a point process X is defined for A ⊆ S as

Λ (A) = EN (A) =

∫
A

λ (ξ) dξ (A.2)

and measures the expected number of points of the process in the set A.
I follow the literature and assume that Λ (A) is locally finite, i.e. Λ (A) <
∞ for all bounded A ⊆ S, and diffuse, i.e. Λ ({ξ}) = 0, for ξ ∈ S (or
alternatively @ξ ∈ S s.t. Λ ({ξ}) > 0). The fact that Λ (A) is diffuse implies
that P [N (dξ) > 1] = o (|dξ|): in words, there are no coincident points, and
the process is simple.31

Appendix A.3. Poisson Processes and Marked Poisson Processes

The Poisson point process is the simplest point process and is widely
used in practical applications. The definition of the process consists of two
conditions, that also provide a practical algorithm for simulation.

DEFINITION 3. (Poisson Point Process) A point process X on S is
a Poisson Point Process with intensity λ (ξ) if the following two conditions
are satisfied:

1. for any bounded A ⊆ S with Λ (A) <∞

P [N (A) = n] = [Λ (A)]n
exp [−Λ (A)]

n!
, n = 0, 1, 2, .... (A.3)

31The intensity function has also an infinitesimal interpretation, since the fact that
P [N (dξ) > 1] = o (|dξ|) implies that E [N (dξ)] converges to P [N (dξ) = 1] as |dξ| → 0.
It follows that the quantity λ (ξ) dξ can be interpreted as the probability of an event
in the infinitesimal region dξ, i.e λ (ξ) dξ ≈ P [N (dξ) = 1]. Analogously notice that
E [N (dη)N (dξ)] ≈ P [N (dη) = N (dξ) = 1], for ξ and η close, and we can interpret the
quantity λ2 (ξ, η) dξdη as the probability of observing two events in the infinitesimal regions
dξ and dη.
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2. for any n ∈ N and any bounded A ⊆ S with 0 < Λ (A) < ∞ , condi-
tional on N (A) = n the point are i.i.d. over S with density

f (ξ) =
λ (ξ)∫

A
λ (ξ) dξ

(A.4)

We will write X ∼ Poi (S, λ (ξ)).

The first condition requires that for any bounded set the number of points
of the process is a draw from the Poisson distribution with mean Λ (A) =∫
A
λ (ξ) dξ, implying EN (A) = Λ (A) for any bounded A ⊆ S. The second

condition requires that, conditioning on the number of points, the locations
are i.i.d. draws from a density function proportional to the intensity function.
Therefore the intensity function entirely characterizes the process.

Sometimes condition (A.4) is replaced by the independent scattering prop-
erty: if X ∼ Poi (S, λ (ξ)), then for disjoint sets A1, A2, A3, ...AK ⊆ A the
random variables N (A1) , N (A2) , ..., N (AK) are stochastically independent
Poisson random variables, i.e.

P [N (A1) = n1, ..., N (AK) = nK ] =
K∏
k=1

[Λ (Ak)]
nk exp [−Λ (Ak)]

nk!
(A.5)

for n = n1 + n2 + ...+ nk. In Appendix B, I prove that conditions (A.3) and
(A.4) imply (A.5).

In this paper I consider only Inhomogeneous Poisson Point Processes
(IPP): these processes are nonstationary and anisotropic, with spatially vary-
ing intensity function.32 The IPP is a very simple and parsimonious model

32A Poisson Point Process is said Homogeneous (or stationary) if λ (ξ) = λ, for all ξ ∈ S
and f (ξ) = |A|−1

, for any bounded A ⊆ S. It follows that for an Homogeneous Poisson
Process (HPP) EN (A) = λ |A|. The HPP is considered the ideal of complete spatial
randomness in literature. Complete spatial randomness means that we do not expect
the intensity of the process to vary over the region we are considering and that there are
no interactions amongst different events. Indeed, by condition (A.3) and the fact that
λ (ξ) = λ, an HPP shows stationarity and isotropy, cause N (A) ∼ Poisson (λ |A|), and
thus the expected number of events does not vary over the planar region A; by condition
(A.4) and f (ξ) = |A|−1

, we have no clustering or inhibition (the presence of a point in ξ
does not make more or less likely the occurrence of an event η in the neighborhood of ξ).
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for clustered points. Notice that the clustering of locations arises only ex-
ogenously, being a consequence of the intensity specification: there is no
behavioral interpretation of points clusters.

In Appendix B, I show that a point process X is Poisson if and only if
its probability law is33

P [(X ∩ A) ∈ F ] =
∞∑
n=0

exp [−Λ (A)]

n!

∫
A

· ·
∫
A

1[{x1,...,xn}∈F ]

n∏
i=1

λ (xi) dx1 · ·dxn

(A.6)
for all A ⊆ S, with Λ (A) =

∫
A
λ (ξ) dξ < ∞, and for all F ⊆ N1f . By

convention for n = 0, I write 1[∅∈F ]. The probability over S ⊆ R2 is obtained
by substituting A with S.

It is possible to enrich the Poisson model, assigning to each point a ran-
dom variable (or vector) representing an attribute: this random variable is
called mark and the process is called Marked Poisson Process.

More formally, let X0 be a spatial point process defined over the space
S ⊆ R2. If there is a random mark m (ξ) ∈M attached to each point ξ ∈ X0

then the process
X = {{ξ,m (ξ)}| ξ ∈ X0}

is called Marked Point Process with events in S and marks in M. The
mark space M may be a finite set, i.e. M = {1, 2, ...,M}, in which case X
is called a multitype process, or a more general set M⊆ Rq, q ≥ 1.

DEFINITION 4. (Marked Poisson Process) The process X = {{ξ,m (ξ)}| ξ ∈ X0}
is a Marked Poisson Process if

1. X0 is a Poisson Point Process over S with intensity function λ0 (ξ)
(with

∫
A

λ0 (ξ) dξ <∞ for all bounded A ⊆ S)

2. conditional on X0 the marks {m (ξ)| ξ ∈ X0} are mutually independent

The framework developed in the paper is based on the simple processes
described above.

33See also Proposition 3.1 in Moller and Waagepetersen (2004).
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Appendix B. Point Processes Theory

Appendix B.1. Independent Scattering Property

PROPOSITION IfX ∼ Poi (S, λ (ξ)), then for disjoint setsA1, A2, A3, ...Ak ⊆
A the random variables N (A1) , N (A2) , N (A3) , ... are stochastically inde-
pendent, i.e.

P [N (A1) = n1, ..., N (Ak) = nk] =
k∏
j=1

[Λ (Aj)]
nj exp [−Λ (Aj)]

nj!
(B.1)

for n = n1 + n2 + ...+ nk.

Proof. Consider the case in which we have only two disjoint sets, i.e.
A = A1 ∪ A2. The extension to k sets is done by induction. Conditional on
N (A) = n1 + n2 = n, P [ξ ∈ (X ∩ A)] = f (ξ) = λ (ξ) /Λ (A). Then given
N (A) = n,

P [N (A1) = 1|N (A) = n] =

∫
A1

f (ξ) dξ =
Λ (A1)

Λ (A)

and by condition (1) of the definition of a Poisson process, P [N (A1) = n1|N (A) = n] =[
Λ(A1)
Λ(A)

]n1

and also

P [N (A1) = n1, N (A2) = n2|N (A) = n] =

(
n1 + n2

n1

)[
Λ (A1)

Λ (A)

]n1
[

Λ (A2)

Λ (A)

]n2

=
n!

n1! (n− n1)!

[Λ (A1)]n1 [Λ (A2)]n−n1

Λ (A)n

and thus condition (2) of the definition of a Poisson process implies that
the unconditional probability is

P [N (A1) = n1, N (A2) = n2] =
n!

n1! (n− n1)!

[Λ (A1)]n1 [Λ (A2)]n−n1

[Λ (A)]n
[Λ (A)]n

exp [−Λ (A)]

n!

= [Λ (A1)]n1
exp [−Λ (A1)]

n1!
[Λ (A2)]n−n1

exp [−Λ (A2)]

(n− n1)!
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Appendix B.2. Probability Law of a Poisson Point Process

PROPOSITION A point process X is a Poisson Point Process, i.e X ∼
Poi (S, λ (ξ)) , if and only if for all A ⊆ S, with Λ (A) =

∫
A
λ (ξ) dξ < ∞,

and for all F ⊆ N1f

P [(X ∩ A) ∈ F ] =
∞∑
n=0

exp [−Λ (A)]

n!

∫
A

· ·
∫
A

1[{x1,...,xn}∈F ]

n∏
i=1

λ (xi) dx1 · ·dxn

(B.2)
where by convention for n = 0 we have 1[∅∈F ]

Proof. Conditioning on N (A) = n, a specific realization {x1, ..., xn}
over A has probability

n∏
i=1

f (xi) =
n∏
i=1

[
λ(xi)∫
A λ(ξ)dξ

]
. Therefore all the possible

realizations {x1, ..., xn} ∈ F have probability

P [ (X ∩ A) ∈ F |N (A) = n] =

∫
A

· ·
∫
A

1[{x1,...,xn}∈F ]

n∏
i=1

[
λ (xi)

Λ (A)

]
dx1 · ·dxn.

In order to get the unconditional probability we just need to multiply by
P [N (A) = n] = exp[−Λ(A)]

n!
Λ (A)n and sum for all n, obtaining (B.2).

For the necessary part of the proof just multiply (B.2) inside the sum by
Λ(A)n

Λ(A)n
and notice you can rewrite the probability as

P [(X ∩ A) ∈ F ] =
∞∑
n=0

exp [−Λ (A)]

n!
Λ (A)n

∫
A

· ·
∫
A

1[{x1,...,xn}∈F ]

n∏
i=1

[
λ (xi)

Λ (A)

]
dx1 · ·dxn

=
∞∑
n=0

P [N (A) = n]× P [ (X ∩ A) ∈ F |N (A) = n]

where P [N (A) = n] is a Poisson distribution and P [ (X ∩ A) ∈ F |N (A) = n]
is a binomial point process.

The probability law of the process over S ⊆ R2 is obtained from (B.2),
by substituting A with S.
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Appendix B.3. The process under A1,A2 and A3 is Poisson

In our framework we use the Marked Poisson Process extensively and we
exploit a property that we prove in the following lemma (see also Proposition
3.9 in Moller and Waagepetersen (2004), p. 26).

LEMMA 1 If X satisfies Assumptions 1-3 with M ⊆ Rq, q ≥ 1 then
X ∼ Poi (S ×M, λ (ξ,m))

Proof. Notice that Assumptions 1 and 2 are simply the definition of a
Marked Poisson Process. If we add Assumption 2, the probability of a pair
(ξ,m) is f (ξ) ρ (ξ,m) = λ0(ξ)

Λ0(A)
ρ (ξ,m) for any bounded A ⊆ S. Therefore,

conditioning on N (A) = n we have

P [ (X ∩ A) ∈ F |N (A) = n]

=

∫
A

· ·
∫
A

∫
M

· ·
∫
M

1[{(x1,m1),...,(xn,mn)}∈F ]

n∏
i=1

[
λ0 (xi)

Λ0 (A)
ρ (xi,mi)

]
dx1 · ·dxndm1 · ·dmn

=

∫
A×M

· ·
∫

A×M

1[{(x1,m1),...,(xn,mn)}∈F ]

n∏
i=1

[
λ (xi,mi)

Λ0 (A)

]
dx1 · ·dxndm1 · ·dmn

Therefore the unconditional distribution is

P [(X ∩ A) ∈ F ]

=
∞∑
n=0

exp [−Λ0 (A)]

n!

∫
A×M

· ·
∫

A×M

1[{(x1,m1),...,(xn,mn)}∈F ]

n∏
i=1

[λ (xi,mi)] dx1 · ·dxndm1 · ·dmn

Notice that
∫

A×M
λ (ξ,m) dξdm =

∫
A

λ0 (ξ)

[∫
M
ρ (ξ,m) dm

]
dξ =

∫
A

λ0 (ξ) dξ =

Λ0 (A) for any A and define t = (ξ,m) with values in T = S × M and
λ (t) = λ0 (ξ) ρ (ξ,m) to get

P [(X ∩ A) ∈ F ] =
∞∑
n=0

exp
[
−
∫
A×M λ (t) dt

]
n!

∫
A×M

··
∫

A×M

1[{t1,...,tn}∈F ]

n∏
i=1

[λ (ti)] dt1··dtn

It follows from (B.2) thatX ∼ Poi (T, λ (t)) orX ∼ Poi (S ×M, λ (ξ,m))
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Appendix B.4. The case of Multitype Point Process

If the process is a multitype point process then the previous proposition
can be specialized in the following

LEMMA 2 If a Marked Point Process X with discrete mark space
M = {1, 2, ...,M} satisfies Assumptions 1-3, it is equivalent to a multivari-
ate Poisson Process (X1, X2, ..., XM), i.e Xm ∼ Poi (S, λm (ξ)) are mutually
independent and λm (ξ) = λ0 (ξ) ρm (ξ), m = 1, ...,M .

Proof. Assumptions 1 and 2 together form the definition of a Mul-
titype Poisson Process. The (IF) part of the proof then just requires to
prove that Assumption 3 implies the multivariate poisson process, i.e. that
P (m (ξ) = m|X0 = x0) = ρm (ξ) implies Xm ∼ Poi (S, λm (ξ)) and mutually
independent.

(IF ) A Poisson Point Process is uniquely determined by its void proba-
bilities (Theorem 3.1 p. 16 in Moller and Waagepetersen (2004))

v (A) = P [N (A) = 0] = P [X ∩ A = ∅] = exp [−Λ (A)]

Therefore for independent Poisson Processes X1 and X2 with intensity
measure Λ1 (·) and Λ2 (·), their joint distribution is uniquely determined by
the joint void probabilities

P [X1 ∩ A = ∅, X2 ∩B = ∅] = exp [−Λ1 (A)− Λ2 (A)]

for any bounded A,B ⊆ S. For simplicity consider a multitype point
process with M = {1, 2} only: the extension to M types can be proven by
induction. Let the intensity functions of the univariate processes be λm (ξ) =
λ0 (ξ) ρm (ξ) with intensity measures Λm (A) =

∫
A
λm (ξ) dξ. The univariate

process X1 can be thought of as obtained from the multitype process X0

by including ξ ∈ X in X1 with probability P (m (ξ) = 1|X0 = x0) = ρ1 (ξ).
Such a process is called an independent thinning of X0 with retention prob-
abilities ρ1 (ξ). The events are excluded or included independently of each
other. Formally the process X1 can be thought of as the process

X1 = {ξ ∈ X0 : U (ξ) ≤ ρ1 (ξ)}

where U (ξ) ∼ U [0, 1].
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Notice that Λ0 (A) = Λ1 (A) + Λ2 (A) and that conditional on ξ ∈ X0, for
ξ ∈ A

P [ξ ∈ X1] =

∫
A

ρ1 (ξ)
λ0 (ξ)

Λ0 (A)
dξ

The definition of Poisson process then implies that

P [X1 ∩ A = ∅] =
∞∑
n=0

P [N (X0 ∩ A) = n]× P [X1 ∩ A = ∅|N (X0 ∩ A) = n]

=
∞∑
n=0

exp [−Λ0 (A)]

n!
Λ0 (A)n ×

×
∫
A

· ·
∫
A

(
n∏
i=1

[1− ρ1 (xi)]
λ0 (xi)

Λ0 (A)

)
dx1 · ·dxn

=
∞∑
n=0

exp [−Λ0 (A)]

n!

[∫
A

[1− ρ1 (ξ)]λ0 (ξ) dξ

]n
= exp [−Λ0 (A)]

∞∑
n=0

[∫
A
λ0 (ξ) dξ −

∫
A
ρ1 (ξ)λ0 (ξ) dξ

]n
n!

= exp [−Λ0 (A)]
∞∑
n=0

[Λ0 (A)− Λ1 (A)]n

n!

= exp [−Λ0 (A)] exp [Λ0 (A)− Λ1 (A)]

= exp [−Λ1 (A)]

Using the same argument we can show that

P [X2 ∩ A = ∅] = P [X0�X1 ∩ A = ∅] = exp [−Λ0 (A) + Λ1 (A)]

Therefore we have proven that X1 and X2 are Poisson processes. It
remains to be shown that they are independent. Rewrite the joint probability
of X1 and X2 for A,B ⊆ S as

P [X1 ∩ A = ∅, X2 ∩B = ∅] = P [X ∩ (A ∩B) = ∅, X1 ∩ A�B = ∅, X2 ∩B�A = ∅]

Using the independent scattering property of the Poisson Process, for
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A,B ⊆ S

P [X ∩ (A ∩B) = ∅, X1 ∩ A�B = ∅, X2 ∩B�A = ∅]
= P [X ∩ (A ∩B) = ∅]P [X1 ∩ A�B = ∅]P [X�X1 ∩B�A = ∅]
= exp [−Λ0 (A ∩B)] exp [−Λ1 (A�B)] exp [−Λ0 (B�A) + Λ1 (B�A)]

= exp [−Λ0 (A ∩B)− Λ1 (A�B)− Λ0 (B�A) + Λ1 (B�A) + Λ1 (A ∩B)− Λ1 (A ∩B)]

= exp [−Λ1 (A)− Λ0 (B) + Λ1 (B)]

= exp [−Λ1 (A)] exp [−Λ0 (B) + Λ1 (B)]

= P [X1 ∩ A = ∅]P [X2 ∩B = ∅]

ThenX1 andX2 are independent Poisson Processes with intensity λm (ξ) =
λ0 (ξ) ρm (ξ), m = 1, 2. We can extend the argument to m = 1, ..,M by in-
duction.

(ONLY IF ) Remember that the union of independent Poisson Processes
is a Poisson Process with the intensity function equal to the sum of the sin-

gle processes intensities. Therefore

(
M⋃
m=1

Xm

)
∼ Poi

(
S,

M∑
m=1

λm (ξ)

)
=

Poi (S, λ0 (ξ)) = X0. This means that the process satisfies Assumption 1.
The proof follows from the fact that conditioning on the sum of M indepen-
dent Poisson variables we obtain a multinomial distribution

P (m (ξ) = m|X0 = x0) = P

[
ξ ∈ Xm| ξ ∈

M⋃
m=1

Xm

]

= P

[
(ξ ∈ Xm) ∩

(
ξ ∈

M⋃
m=1

Xm

)]
×

(
P

[
ξ ∈

M⋃
m=1

Xm

])−1

=
λm (ξ)
M∑
m=1

λm (ξ)

=
λ0 (ξ) ρm (ξ)
M∑
m=1

λ0 (ξ) ρm (ξ)

= ρm (ξ)

Therefore also Assumption 3 is satisfied and since Assumption 3 implies
Assumption 2, the proof is complete.

When the conditional mark distribution does not depend on location,
ρ (ξ,m) = ρ (m) for all ξ, then we have random labelling.
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Appendix C. Statistical Properties of the Indices

If the process X satisfies Assumptions 1-3 it is possible to derive the
moments of any index T (X). The following theorem applies to any possible
index based on the above definition: it is therefore a very general result.

THEOREM 1. If X is a point process satisfying Assumptions 1-3, then the
expected value of any index T (X) is

E [T (X)] =
∞∑
n=0

exp [−Λ (S ×M)]

n!
×

×
∫
S×M

· ·
∫
S×M

T ({xi,mi}ni=1)
n∏
i=1

λ (xi,mi) dx1 · ·dxndm1 · ·dmn

More generally the r-th raw moment of T (X) is

E [T r (X)] =
∞∑
n=0

exp [−Λ (S ×M)]

n!
×

×
∫
S×M

· ·
∫
S×M

T r ({xi,mi}ni=1)
n∏
i=1

λ (xi,mi) dx1 · ·dxndm1 · ·dmn

Proof. If the process satisfies Assumptions 1-3, then it is Poisson over
S ×M by Lemma 1. Therefore the probability law of X is given by (??).
Notice that T (X) is a nonnegative function. Since any nonnegative function
can be expressed as a weighted sum of indicator functions, the result follows.
The same argument delivers the results for all the moments.

THEOREM 2. Assume X follows a point process satisfying Assumptions
1-3 and the index satisfies Assumption 4. Then

E [T (X)] = E [φ (ξ)] =

∫
S
φ (ξ)

λ0 (ξ)

Λ (S)
dξ (C.1)

V [T (X)] = E
[

1

N (S)

]
V [φ (ξ)] (C.2)
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Proof. The Poisson assumption allows us to compute the expectation in the
following way

E [T (X)] =
∞∑
n=0

E [T (X)|N (S) = n]× P [N (S) = n]

It follows that

E [T (X)] = E

[
1

N (S)

∑
ξ∈X0

φ (ξ)

]

=
∞∑
n=0

E

[
1

n

∑
ξ∈X0

φ (ξ)

∣∣∣∣∣N (S) = n

]
× P [N (S) = n]

=
∞∑
n=0

1

n

∑
ξ∈X0

E [φ (ξ)|N (S) = n]× P [N (S) = n]

=
∞∑
n=0

1

n

[
n

∫
S
φ (ξ)

λ0 (ξ)

Λ0 (S)
dξ

]
× P [N (S) = n]

=

∫
S
φ (ξ)

λ0 (ξ)

Λ0 (S)
dξ

∞∑
n=0

P [N (S) = n]

=

∫
S
φ (ξ)

λ0 (ξ)

Λ0 (S)
dξ

= E [φ (ξ)]

where the fourth equality follows from the fact that the locations of the
poisson process are i.i.d points with density λ0(ξ)

Λ0(S)
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The variance of the index is computed in several steps

V [T (X)] = V

[
1

N (S)

∑
ξ∈X0

φ (ξ)

]

= E

( 1

N (S)

∑
ξ∈X0

φ (ξ)

)2
−(E[ 1

N (S)

∑
ξ∈X0

φ (ξ)

])2

= E

[
1

N (S)2

∑
ξ∈X0

φ (ξ)2

]
+ E

 1

N (S)2

∑
ξ∈X0

∑
η∈X0
η 6=ξ

φ (ξ)φ (η)


−

(
E

[
1

N (S)

∑
ξ∈X0

φ (ξ)

])2

The first component of the sum above is

E

[
1

N (S)2

∑
ξ∈X0

φ (ξ)2

]
=

∞∑
n=0

1

n2

[
n

∫
S
φ (ξ)2 λ0 (ξ)

Λ0 (S)
dξ

]
× P [N (S) = n]

= E
[

1

N (S)

] ∫
S
φ (ξ)2 λ0 (ξ)

Λ0 (S)
dξ

= E
[

1

N (S)

]
E
[
φ (ξ)2]

The second component of the sum is

E

 1

N (S)2

∑
ξ∈X0

∑
η∈X0
η 6=ξ

φ (ξ)φ (η)

 =
∞∑
n=0

1

n2

[
n (n− 1)

∫
S

∫
S
φ (ξ)φ (η)

λ0 (ξ)λ0 (η)

Λ0 (S)2 dηdξ

]
×P [N (S) = n]

= E

[
n− 1

n

(∫
S
φ (ξ)

λ0 (ξ)

Λ0 (S)
dξ

)2
]

=

(
1− E

[
1

N (S)

])
E [φ (ξ)]2
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where the second equality follows from the i.i.d. condition of the Poisson
process, so ξ and η are independent points. Therefore the variance is

V [T (X)] = E
[

1

N (S)

]
E
[
φ (ξ)2]+

+

(
1− E

[
1

N (S)

])
E [φ (ξ)]2

−E [φ (ξ)]2

= E
[

1

N (S)

] [
E
[
φ (ξ)2]− E [φ (ξ)]2

]
= E

[
1

N (S)

]
V [φ (ξ)]

PROOF OF PROPOSITION 1
Consider the quantity

∑
m∈M |ρm (ξ)− ρm|. Under complete segregation,

for all ξ ∈ X0, ∃m∗ ∈ M such that ρm∗ (ξ) = 1 and ρm (ξ) = 0 for any
m 6= m∗. The probability of m∗ is ρm∗ , therefore∑

m∈M

|ρm (ξ)− ρm| = ρ1 |1− ρ1|+ (1− ρ1) |0− ρ1|+ ...

...+ ρM |1− ρM |+ (1− ρM) |0− ρM |
= 2ρ1 (1− ρ1) + ...+ 2ρM (1− ρM)

= 2
∑
m∈M

ρm (1− ρm)

= 2I

The second part follows the same lines. Consider the quantity
∑

m∈M (ρm (ξ)− ρm)2.
Under complete segregation, for all ξ ∈ X0, ∃m∗ ∈M such that ρm∗ (ξ) = 1
and ρm (ξ) = 0 for any m 6= m∗. The probability of m∗ is ρm∗ , therefore
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d (ξs) =
∑
m∈M

(ρm (ξs)− ρm)2

= ρ1 (1− ρ1)2 + (1− ρ1) (0− ρ1)2 +

...+ ρM (1− ρM)2 + (1− ρM) (0− ρM)2

= ρ1 (1− ρ1) (1− ρ1 + ρ1) + ...+ ρM (1− ρM) (1− ρM + ρM)

=
∑
m∈M

ρm (1− ρm) = I

Appendix C.1. Extensions to Continuous Marks

Throughout the paper I maintained the assumption that the marks were
discrete, since I focused on the measurement of racial segregation. Here
I show how to extend the basic definitions and results to continuous and
multivariate segregation. Assume the researcher is interested in measuring
income segregation.

The definition of extreme spatial separation slightly changes.

DEFINITION 5. The process X is completely unsegregated if and only
if ρ (ξ,m) = ρ (m) for all ξ ∈ X0, m ∈ M. The process X is completely
segregated if and only if for all ξ ∈ x0, there is an m∗ = m∗ (ξ) ∈ M such
that ρ (ξ,m) = δ (m−m∗), where δ (u) is the Dirac-Delta function.

To measure the level of income segregation (or any nonnegative contin-
uous variable) the mark space is assumed to be M = [0,∞). The spatial
dissimilarity index is derived analogously to the racial segregation case. Con-
sider the quantity

d (ξ) =

∫
M

|ρ (ξ,m)− ρ (m)| dm (C.3)

PROPOSITION 2. If the mark space isM = [0,∞) then under Complete
Segregation

d (ξs) = 2

53



Proof. Consider the quantity
∫
M |ρ (ξ,m)− ρ (m)| dm. For a given ξ and

under complete segregation, ∃m∗ = m∗ (ξ) ∈M such that ρ (ξ,m) = δ (m−m∗).
The density associated with the realization of m∗ is ρ (m∗). Therefore we get∫
M
|ρ (ξ,m)− ρ (m)| dm =

∫ ∞
0

ρ (m∗)

[∫ ∞
0

|δ (m−m∗)− ρ (m)| dm
]
dm∗

We can solve the integral inside to get∫ ∞
0

|δ (m−m∗)− ρ (m)| dm = lim
ε→0

∫ m∗− ε
2

0

ρ (m) dm

+ lim
ε→0

∫ m∗+ ε
2

m∗− ε
2

|δ (m−m∗)− ρ (m)| dm+

+ lim
ε→0

∫ ∞
m∗+ ε

2

ρ (m) dm

= lim
ε→0

∫ m∗− ε
2

0

ρ (m) dm+ lim
ε→0

∫ m∗+ ε
2

m∗− ε
2

δ (m−m∗) dm

− lim
ε→0

∫ m∗+ ε
2

m∗− ε
2

ρ (m) dm+ lim
ε→0

∫ ∞
m∗+ ε

2

ρ (m) dm

By taking the limit for ε→ 0, using the fact that for Dirac-Delta

lim
ε→0

∫ m∗+ ε
2

m∗− ε
2

δ (m−m∗) dm = 1

and

lim
ε→0

∫ m∗+ ε
2

m∗− ε
2

ρ (m) dm = 0

we can show that∫ ∞
0

|δ (m−m∗)− ρ (m)| dm = 1 +

∫ m∗

0

ρ (m) dm+

∫ ∞
m∗

ρ (m) dm = 2

It follows that∫
M
|ρ (ξ,m)− ρ (m)| dm =

∫ ∞
0

2ρ (m∗) dm∗ = 2
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Therefore the individual Spatial Dissimilarity index for income segrega-
tion is defined as

φD Inc (ξ) =
1

2

∫
M

|ρ (ξ,m)− ρ (m)| dm

Appendix D. Artificial Cities

In Figure D.6, I show six artificial cities: A(symptotia), B(ayesia), C(lassica),
D(eMoivria), E(mpirica) and F(isheria). Each city contains 800 individuals,
distributed over the square [0, 4] × [0, 4]. There are 25% blacks (the black
circles) and 75% whites (the red circles). The grid represents the partition
in neighborhoods.

For Cities A, B and C, I simulated an homogeneous Poisson Process with
50 points on a unit square, one for blacks and a different one for whites; I
used the unit squares as neighborhoods of the cities, assigning 4 of them to
be black and 12 of them to be white. City D was constructed by simulating
white locations as an HPP with 600 points over the square [0, 4]×[0, 4]. Then
I simulated blacks locations as an HPP with 200 points in the circle of radius
one, where the center of the circle coincided with the center of the city. City
E was constructed by simulating an HPP with 600 points over the square
[0, 4]× [0, 4] for the whites. Then I simulated two HPP with 100 points each
over the circle of radius 1 for the black population. This creates an irregular
black neighborhood in the city, while allowing whites to be inside the ghetto
too. Finally, city F is the result of a simulation of an HPP with 600 points
over the square [0, 4]× [0, 4] for the whites and an HPP with 200 points over
the square [0, 4] × [0, 4] for the blacks. This is the perfect integrated case,
according to our framework.

I report results for the spatial dissimilarity index estimation. In Table
A1 I report the results of estimation for the artificial cities. The bandwidth
is chosen using the Diggle and Berman (1989) procedure.
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Figure D.6: Artificial Cities
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Figure 7: CITY B
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Figure 7: CITY F

Table A1: Traditional vs Spatial Dissimilarity

Bandwidth Spatial Dism Trad. Dism
City A 2.83 0.9225333 1
City B 2.605 0.900698 1
City C 0.37 0.9061751 1
City D 2.445 0.803017 0.7816667
City E 2.85 0.8993939 0.8816667
City F 2.73 0.03108531 0.1216667
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For cities A, B and C the estimated spatial dissimilarity is smaller than
the traditional, since the conditional probabilities surfaces make the estimate
smoother. For cities D and E spatial and traditional index are very close.
Of course if we change the neighborhoods definition this does not have to
hold.34 For the perfectly integrated city F, the spatial dissimilarity measures
less segregation than the standard measure.

Appendix E. Spatial Indices of Segregation and Diversity

Appendix E.1. Spatial Dissimilarity Index

The spatial dissimilarity is constructed by using the absolute deviation
as distance function between distributions

d (ξ) =
∑
m∈M

|ρm (ξ)− ρm| (E.1)

Using the results of Proposition 1 we construct the global Spatial Dis-
similarity Index is

TD (X) =
1

N (S)

∑
ξ∈X0

φD (ξ) (E.2)

The main difference is that in the traditional dissimilarity the conditional
probability ρm (ξ) is assumed to be the same for all locations in the same
neighborhood, while the spatial dissimilarity does not impose such within-
neighborhood restriction on the spatial segregation.

Using the results in Theorem 2, one can derive the theoretical expected

34I computed the dissimilarity index for several different partitions of cities D and E: 4,
16, and 64 neighborhoods respectively.

For city E there is a clear increase of the index as we increase the number of neighbor-
hoods. Surprisingly, for city D, the value of the index is not necessarily monotonically
increasing in the number of neighborhoods: from 4 neighborhoods to 16 the index in-
creases, while it decreases from 16 neighborhoods to 64.

This suggests another potential problem of the neighborhood-based approach: the rela-
tionship between the scale of the partition and the index is not necessarily monotonic.

These results are available from the author
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value of the index.

E [TD (X)] =

[
2Λ0 (S)

∑
m∈M

ρm (1− ρm)

]−1 ∫
S

[∑
m∈M

|ρm (ξ)− ρm|

]
λ0 (ξ) dξ

(E.3)
In most of the literature, the dissimilarity index is used to measure the

segregation of a minority group from the rest of the population: this is the
dichotomous version, in which the racial groups are assumed to be two, the
minority and the rest of the population. In its dichotomous version, the
spatial dissimilarity can be simplified, by using the fact that ρnb = 1 − ρb
(where b=blacks and nb=nonblacks), with φDic (ξ) = |ρb(ξ)−ρb|

2ρb(1−ρb)

TDic (X) =
1

N (S)

∑
ξ∈X0

φDic (ξ)

Appendix E.2. Spatial Exposure Indices

The spatial exposure indices are derived using the squared deviation as
distance function between spatial densities

d (ξ) =
∑
m∈M

[ρm (ξ)− ρm]2 (E.4)

The value of the index under perfect segregation is derived in proposition
1 The individual Spatial Exposure Index is defined as the location-specific
squared deviation from perfect integration, normalized using (11).

φExp (ξ) =

∑
m∈M [ρm (ξ)− ρm]2∑
m∈M ρm (1− ρm)

(E.5)

and the global Spatial Exposure Index is defined as

TExp (X) =
1

N (S)

∑
ξ∈X0

φExp (ξ) (E.6)

An alternative approach to construct an exposure index is suggested in
Reardon and Firerbaugh (2002). One can consider the dichotomous version
of the index (E.5) for each group m, that is

φV,m (ξ) =
[ρm (ξ)− ρm]2

ρm (1− ρm)
(E.7)
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giving the dichotomous version of (E.6)

TV,m (X) =
1

N (S)

∑
ξ∈X0

φV,m (ξ) (E.8)

This index corresponds to a spatial version of Eta2 (see White (1986) for
a description) and it is a measure of how isolated a racial group is from the
rest of the population. This is an index varying between 0 and 1, therefore
a normalized index is constructed as the weighted sum of (E.8), where the
weights are the ρm’s. The Spatial Normalized Exposure Index is derived
as

TP (X) =
∑
m∈M

ρmTV,m (X) (E.9)

=
1

N (S)

∑
ξ∈X0

∑
m∈M

[ρm (ξ)− ρm]2

(1− ρm)

Notice that this is not equivalent to index (E.6).

Appendix E.3. Spatial Fractionalization Indices

Many studies relate ethnic and racial heterogeneity to economic out-
comes.35 The level of heterogeneity in these studies is usually measured
with the Fractionalization Index. The latter measures the probability that
two randomly drawn individuals belong to different racial groups. The index
is derived from the Herfindhal index of homogeneity and it is equal to

I = 1−
∑
m∈M

ρ2
m =

∑
m∈M

ρm (1− ρm) (E.10)

In the sociological literature the index is also known as the Simpson Inter-
action index. An index of zero indicates perfect homogeneity, in which only
one racial group is present. Increasing values of the index imply increasing
heterogeneity.

35Alesina, Baqir and Easterly (1999) show that more fractionalization is correlated with
lower provision of local public goods. Easterly and Levine (1997) argue that more racially
heterogenous societies show slower economic growth. Alesina and La Ferrara (2000) that
participation in social activities is lower in more unequal and in more racially or ethnically
heterogeneous localities. Mauro (1994) associates racial heterogeneity to more corruption.
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In a recent contribution, D‘Ambrosio, Bossaert and La Ferrara (2008)
develop a more general version of the index in which the primitives are as-
sumed to be individuals and their similarity. I follow a similar idea and
develop a spatial version of the fractionalization index, in which the primi-
tives of the aggregate index are the individual location-specific heterogeneity
indices. The location-specific index is the level of fractionalization in location
ξ

I (ξ) =
∑
m∈M

ρm (ξ) (1− ρm (ξ))

and therefore the aggregate Spatial Fractionalization Index is

TI (X) =
1

N (S)

∑
ξ∈X0

I (ξ) (E.11)

This index measures the racial heterogeneity in the city incorporating
the spatial location of individuals. Moreover the index can be disaggregated
at the individual level, to examine the distribution of heterogeneity in the
population. It can also be disaggregated over space showing which regions
of the metropolitan area are more diverse.

An index of segregation can be derived from the spatial fractionalization
using the distance

d (ξ) = |I (ξ)− I|

It is straightforward to show that under complete segregation d (ξs) = I:
in each location there is maximum homogeneity therefore I (ξ) = 0 for any
ξ. Define

φF (ξ) =
|I (ξ)− I|

I

to be the individual spatial relative fractionalization, which measures the
absolute deviation from spatial homogeneity. The global Spatial Relative
Fractionalization Index is

TF (X) =
1

N (S)

∑
ξ∈X0

φF (ξ) (E.12)

Appendix E.4. Spatial Entropy Indices

An alternative to the fractionalization indices is the Theil Entropy (or
Information) Index (see Theil (1972) and Theil and Finezza (1971)). The
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entropy index for the metropolitan area is

E =
∑
m∈M

ρm ln

(
1

ρm

)
(E.13)

and it can be thought of as a measure of heterogeneity of the city since it
is equal to zero if there is only one group and it reaches its maximum when all
the groups have equal probability. I define a location-specific entropy index
as

E (ξ) =
∑
m∈M

ρm (ξ) ln

(
1

ρm (ξ)

)
The Spatial Entropy Index is

TE (X) =
1

N (S)

∑
ξ∈X0

E (ξ) (E.14)

This index measures the average racial heterogeneity in the city but in-
corporates the spatial location of each individual as a primitive. As for the
fractionalization index it can be disaggregated at the individual and spatial
level.

A simple index of segregation based on the spatial entropy can be con-
structed by defining a distance function

d (ξ) = |E (ξ)− E|

It is straightforward to show that under complete segregation d (ξs) = E:
in fact complete segregation implies E (ξ) = 0 for all ξ. Define the individual
location-specific spatial relative entropy as

φH (ξ) =
|E (ξ)− E|

E

This is the value of the absolute deviation from spatial homogeneity as
measured by the entropy of the metropolitan area. The Spatial Relative
Entropy Index formula is

TH (X) =
1

N (S)

∑
ξ∈X0

φH (ξ) (E.15)

and measures the average absolute deviation from spatial homogeneity.
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Appendix F. Additional Tables

Table F.10: Correlations with traditional indices

Spat. Dissim. SSI Dissim Isol Info
Panel A: Blacks

SSI 0.7044
Dissimilarity 0.6675 0.5740
Isolation 0.7371 0.9000 0.7810
Information 0.7290 0.7926 0.9210 0.9545
Gini 0.6749 0.5905 0.9897 0.7797 0.9180

Panel B: Multigroup

Dissimilarity 0.7484
Isolation 0.7241 0.8821
Information 0.7470 0.9530 0.9544
Gini 0.7430 0.9860 0.8442 0.9402

The Spatial Dissimilarity is the average individual spatial dissimilarity. The SSI is the Spectral Segregation
Index of Echenique and Fryer (2006). The Isolation, Information and Gini indices of segregation are
described in Massey and Denton (1988) and Reardon and Firebaugh (2002). The spatial dissimilarity
and the SSI are computed using block level data from the Summary File 1, Census 2000. The remaining
indices are computed using Census Tracts data from the Census 2000. Correlations with indices computed
using blocks are similar and available from the author.
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Table F.11: Differences among traditional and spatial indices

Dissim Exposure
Median hh income (log) -0.195 -0.167 -0.144 -0.139 -0.113 -0.101

(0.038)*** (0.042)*** (0.042)*** (0.048)*** (0.053)** (0.055)*
Population (log) -0.025 -0.021 -0.028 -0.015 -0.016 -0.012

(0.005)*** (0.005)*** (0.008)*** (0.006)** (0.007)** (0.010)
Fraction of BA 0.169 0.125 0.101 0.022 -0.054 -0.076

(0.081)** (0.092) (0.091) (0.101) (0.119) (0.118)
Gini -0.127 -0.062 0.122 0.299 0.318 0.509

(0.272) (0.279) (0.285) (0.342) (0.359) (0.368)
Fraction of Blacks 0.326 0.326 0.308 0.506 0.486 0.462

(0.054)*** (0.055)*** (0.054)*** (0.067)*** (0.070)*** (0.070)***
Fraction of Asian/Pac. Isl 0.001 0.021 0.196 -0.055 -0.064 0.131

(0.215) (0.218) (0.223) (0.270) (0.280) (0.288)
Fraction of Other 0.190 0.222 0.209 -0.042 -0.094 -0.058

(0.107)* (0.115)* (0.117)* (0.135) (0.148) (0.150)
Manuf. Share -0.136 -0.129 -0.116 -0.123

(0.075)* (0.075)* (0.096) (0.097)
Urban -0.106 -0.082 -0.001 0.016

(0.044)** (0.045)* (0.057) (0.058)

Density(a) -0.013 -0.015
(0.0045)*** (0.0058)***

Area(a) 0.0002 -0.0045
(0.0025) (0.0032)

Number of Tracts(a) 0.0588 0.0371
(0.0344)* (0.0443)

Constant 2.419 2.172 1.934 1.555 1.352 1.108
(0.444)*** (0.470)*** (0.479)*** (0.558)*** (0.605)** (0.618)*

Obs 308 293 293 308 293 293
R-squared 0.369 0.387 0.406 0.351 0.333 0.353

(a) coefficient and standard error multiplied by 103; * significant at 10; ** significant at 5; *** significant
at 1.
Standard errors corrected for clustering at the MSA level in parentheses. The sample contains all 25-30
years old (Panel A) and 20-24 years old (Panel B) individuals born in US from the 1% PUMS 1990.
Controls included but not shown: fraction of blacks in MSA, dummies for race (black, asian, hispanic and
other nonwhite), dummy for female, age dummies, log of population in MSA, log of median income in
MSA, manufacturing share of MSA. The last three variables are also included interacted with the black
dummy.
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Table F.12: Segregation and Outcomes: spatial vs non-spatial effects

A. Individuals 25-30 years old

Dissimilarity Exposure
Spatial Segregation -0.155 -0.168 -0.098 -0.106

(0.028)*** (0.029)*** (0.017)*** (0.018)***
Spatial Segregation * black 0.055 0.074

(0.07) (0.069)
Trad. Segregation 0.088 0.127 0.047 0.077

(0.030)*** (0.031)*** (0.023)** (0.024)***
Trad. Segregation * black -0.299 -0.237

(0.064)*** (0.050)***

Observations 139634 139634 139634 139634
R-squared 0.038 0.038 0.038 0.038

B. Individuals 20-24 years old

Dissimilarity Exposure
Spatial Segregation -0.184 -0.209 -0.124 -0.139

(0.036)*** (0.040)*** (0.024)*** (0.026)***
Spatial Segregation * black 0.127 0.146

(0.088) (0.083)*
Trad. Segregation 0.095 0.156 0.061 0.107

(0.039)** (0.041)*** (0.030)** (0.031)***
Trad. Segregation * black -0.416 -0.326

(0.065)*** (0.047)***

Observations 97932 97932 97932 97932
R-squared 0.04 0.041 0.04 0.041

* significant at 10; ** significant at 5; *** significant at 1.
Standard errors corrected for clustering at the MSA level in parentheses. The sample contains all 25-30
years old (Panel A) and 20-24 years old (Panel B) individuals born in US from the 1% PUMS 1990.
Controls included but not shown: fraction of blacks in MSA, dummies for race (black, asian, hispanic and
other nonwhite), dummy for female, age dummies, log of population in MSA, log of median income in
MSA, manufacturing share of MSA. The last three variables are also included interacted with the black
dummy.
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