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Abstract

This paper studies racial segregation in schools using data from Add Health. I
estimate a structural equilibrium model of friendship formation among students. Pref-
erences depend on direct connections, but also indirect friendships and popularity. I
find that students tend to interact with similar people. Homophily goes beyond direct
links: students also prefer a racially homogeneous set of indirect friends. I simulate
several counterfactual desegregation busing programs, showing that policies that trans-
port minorities to other schools have nonlinear effects on within-school segregation and
welfare. In some instances, these interventions increase segregation within schools.
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1 Introduction

Social networks are important determinants of individuals’ socioeconomic performance. An
increasing amount of evidence shows that the number and composition of social ties affects
employment prospects, school performance, risky behavior, adoption of new technologies,
diffusion of information and health outcomes.1 The structure of social ties is endogenous:
individuals choose their peers and friends according to their socioeconomic characteristics
and their relationships. As a consequence, in socially generated networks the agents are likely
to interact with similar individuals (homophily), segregating along socioeconomic attributes.2

This paper estimates a structural model of equilibrium network formation with het-
erogeneous agents, to understand the determinants of racial segregation in social networks.
Preferences are defined over individual socioeconomic characteristics and network structures.
In each period a random player is selected from the population and he meets another agent,
according to a meeting technology. Upon meeting, the player has the opportunity to revise
his linking strategy: a link is created (or maintained, if already in place) if and only if the
utility of the additional link is positive.

Mele (2017a) proves and characterize the existence of a unique stationary equilibrium
for this model, which provides the likelihood of observing a specific network architecture
in the long run. I estimate the posterior distribution of the structural parameters, using a
Bayesian approach. The main challenge is that the model’s likelihood is proportional to an
intractable normalizing constant, that cannot be evaluated or approximated with precision.
To overcome this problem, I use a Markov Chain Monte Carlo algorithm that generates
samples from the posterior distribution without evaluating the likelihood.

Using this theoretical framework, I study segregation in school friendship networks, us-
ing data from the National Longitudinal Study of Adolescent Health (Add Health). This
unique database contains detailed information on friendship networks of students enrolled
in a representative sample of US schools. The final sample includes 14 hihg schools with a
total of 1139 students.3 I find that race, gender and grade are important determinants of
network formation in schools. There is overwhelming evidence of homophily: students tend
to interact and form social ties with similar people, other things being equal. These esti-
mates control for the structure of the network. Furthermore, I find that homophily effects
extend well beyond direct links: for example, students also prefer an homogeneous racial
composition of friends of friends.

This model provides useful guidance to policymakers who care about promoting policies
that affect the structure of the network. I use the estimated model to predict how a change

1For example, see the contributions of Topa (2001); Laschever (2009); Cooley (2010); De Giorgi et al.
(2010); Nakajima (2007); Bandiera and Rasul (2006); Conley and Udry (2010); Golub and Jackson (2011);
Acemoglu et al. (2011).

2See Currarini et al. (2009, 2010), De Marti and Zenou (2009),Echenique et al. (2006).
3I use only the schools from the saturated sample. The sampling scheme of Add Health involved in-

school interviews for all the students. A subsample of 20745 students was also interviewed at home, to
collect detailed individual information. The saturated sample contains schools for which both interviews
were administered to each student enrolled. Therefore this sample does not contain any missing information
about individual controls. This is not the case for most schools in Add Health.
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in the composition of the student population affects the structure of the network and wel-
fare.4 As an example, I consider a desegregation program that affects two schools in the
sample, one with an enrolled population of 98% Whites and the other with 96% African
Americans. The simulations consist of alternative re-assignments of students across schools;
the outcomes of interest in these counterfactuals are the average segregation in the friendship
network within-schools, and the welfare in the new stationary equilibrium of the model.

I find that a desegregation program that equalizes the racial composition across schools
is not welfare maximizing and may promote higher segregation within schools. Furthermore,
a desegregation plan may have different effects on each school, increasing segregation in one
while decreasing it in the other. I also compare the results of these policy experiments with
results generated using a model with a simpler preference structure, where individuals care
only about their direct links. The predictions of such model are quite different from the full
structural model.

The estimation of the posterior distribution is complicated because the likelihood of this
model is proportional to a normalizing constant that cannot be evaluated or approximated
with precision. Indeed, a state-of-the-art supercomputer would take several years to evalu-
ate the likelihood at a single parameter value. This feature prevents the use of traditional
Markov Chain Monte Carlo schemes, e.g. Metropolis-Hastings, that evaluate the likelihood
at each iteration. To circumvent this problem, To circumvent this issue, I use a Markov Chain
Monte Carlo algorithm that samples from the posterior distribution of the parameters with-
out evaluating the likelihood. The algorithm belongs to the class of exchange algorithms,
first proposed by Murray et al. (2006) to generate samples from posterior distributions with
similar intractable likelihoods.5

The idea behind the sampler is as follows. At each iteration we perform a double
Metropolis-Hastings step. First, we propose a new parameter vector as in the standard
Metropolis-Hastings scheme; second, we draw a new network from the stationary equilib-
rium of the model at the proposed parameter, using a second Metropolis-Hastings algorithm.
If the network generated by the latter simulation is similar to the network observed in the
data, then the parameter is accepted with high probability; viceversa, if the simulated net-
work is very different from the data, the probability of acceptance is lower. The similarity
between networks is measured using likelihood ratios at the current and proposed parame-
ters.6 The intuition is that if the observed and simulated networks are similar, the proposed
parameter is very likely to generate the data as a draw from the stationary equilibrium. The
details about convergence and implementation are shown in Appendix B of Mele (2017a).
In the empirical application I use an extension of the algorithm which makes use of parallel
computing techniques, allowing estimation of the model using multiple school network data.

This paper contributes to two strands of literature. The empirical network literature

4Alternatively, the model could be used as a guide for the design of randomized experiments that modify
students assignments.

5See also Liang (2010), Caimo and Friel (2011), Mele (2017a), Liang et al. (2010) for additional details.
6While the evaluation of the likelihood is infeasible, it is always possible to evaluate likelihood ratios

computed at the same parameter value, at different network configurations.
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has developed models and methods of identification and estimation for strategic network
formation models (Jackson (2008), DePaula (forthcoming), Graham (2017), Chandrasekhar
(2016)). I contribute to this literature, by estimating the model developed in Mele (2017a) us-
ing detailed network data from US high schools, showing that racial homophily is pervasive.7

This result is consistent with recent evidence on segregation (Currarini et al. (2009),Boucher
(2015), Boucher and Mourifie (forthcoming), Mele (2017b)). I also find racial homophily
for indirect connections. Standard structural models of network formation that exclude link
externalities in the payoffs are not able to capture this feature (see for example Graham
(2017), Dzemski (2017)), attributing all the homophily to direct links.

The rich dataset used in my estimation partially solves the identification issues high-
lighted in Mele (2017a). Indeed, the identification of the structural parameters is problem-
atic only when the researcher can observe one single network. In this work, I estimate the
model using multiple independent network observations: identification is guaranteed by the
theory of exponential families distribution (Lehman (1983)).

The paper also contributes to the literature on racial segregation in schools. This body of
work focused on the effects of residential and school segregation on minority socioeconomic
outcomes (Cutler and Glaeser (1997), Echenique and Fryer (2007), Ferrara and Mele (2011),
Ananat (2011)). Other work has considered the effect of school segregation on educational
attainment (Angrist and Lang (2004)). Most studies analyze segregation among schools in a
district, but few authors have used more detailed data at the school level to understand the
patterns of racial segregation within schools (Echenique and Fryer (2007),Echenique et al.
(2006), Mele (2017b), Boucher (2015),Badev (2013)). My approach in this paper provides a
structural interpretation of the segregation levels within schools.

My model allows me to simulate counterfactual policies that could improve integration
within schools. This is important because there is some evidence that the end of court-
ordered desegregation programs have moderately increased racial segregation (Lutz (2011)).
Other research suggests that the effects of some desegregation program on educational out-
comes are modest (Angrist and Lang (2004)). My contribution is to show that integration at
the school level does not neceessarily lead to interactions among students of different groups.
Furthermore, the change in the relative diversity in the school may have heterogeneous and
potentially nonlinear effects on the levels of within-school segregation and welfare.

The rest of the paper is organized as follows. Section 2 briefly describes the theoretical
model developed in Mele (2017a). Section 3 develops the estimation strategy and provides
an overview of the data. Section 4 report the posterior estimates and the policy experiments.
Some of the computational details are provided in Appendix.

2 A Model of Network Formation

In this section, I briefly present the setup of Mele (2017a)’s model and the equilibrium
likelihood. The proofs and more theoretical results are all contained in that paper. Time is

7For additional structural models of network formation see Menzel (2015), Sheng (2012), DePaula et al.
(forthcoming), Leung (2014b), Leung (2014a).
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discrete and there are n players in the network. Each player is characterized by a vector of
observable covariates Xi, that may contain information about gender, wealth, age, location,
etc. The matrix X = {X1, X2, ..., Xn} contains these vectors for all the players, stacked by
column.

The social network of friendship nominations is represented by a n×n adjacency matrix
g, whose entries gij’s are

gij =

{
1 if individual i nominates individual j as a friend
0 otherwise

I follow the convention in the literature, assuming gii = 0, for any i. The network is directed :
the existence of a link from i to j does not imply the existence of the link from j to i. This
modeling choice reflects the structure of the Add Health data, where friendship nominations
are not necessarily mutual. Some authors refer to this data as perceived networks.8

Let the realization of the network at time t be denoted as gt and the realization of the
link between i and j at time t be gtij. The network including all the current links but gtij, i.e.
gt\gtij, is denoted as gt−ij; while gt−i denotes the network matrix excluding the i-th row (i.e.
all the links of player i).

The network formation process follows a stochastic best-response dynamics as in Blume
(1993). At the beginning of each period a player i is randomly selected from the population,
and he meets individual j, according to a meeting probability ρ(ij|gt−1, X). Notice that ρ
may depend on the previous period network and the observable characteristics. For example,
people that have many friends in common may meet with higher probability than people
without common friends. Or students with similar demographics have higher probability of
interaction than students with different backgrounds. An implicit assumption of the model
is that the player can observe the entire network and the covariates of all the agents, before
making their choice about linking.

Upon meeting agent j, player i decides whether to update his link gij. The preferences
of i are defined over networks and covariates. The utility of player i from network g and
covariates X is given by

Ui (g,X) =
n∑
j=1

gijuij︸ ︷︷ ︸
direct friends

+
n∑
j=1

gijgjimij︸ ︷︷ ︸
mutual friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik

︸ ︷︷ ︸
friends of friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkiwkj

︸ ︷︷ ︸
popularity

(1)

where uij ≡ u (Xi, Xj), mij ≡ m (Xi, Xj), vij ≡ v (Xi, Xj) and wij ≡ w (Xi, Xj) are
(bounded) real-valued functions of the attributes. The utility of the network is the sum
of the net benefits received from each link. The total benefit from an additional link has
four components.

When a player creates a link to another individual, he receives a direct net benefit uij.

8See Wasserman and Faust (1994) for references.
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Figure 1: Components of the utility function

A. Direct friends

B. Mutual friends

C. Friends of friends

D. Popularity

The network contains n = 8 agents, belonging to two groups: blue and yellow. All the panels show a situation
in which player 4 decides whether to form a link to individual 5 (the dashed arrow from 4 to 5). Agent 4
receives different direct utility when he links a blue (Panel A, left) or a yellow (Panel A, right) individual.
Agent 4’s utility from an additional link is different if the link is unilateral (Panel B, left) or reciprocated
(Panel B, right). Furthermore, agent 4’s utility from friends of friends varies with their socioeconomic
composition: 3 blue individuals (Panel C, left) provide different utility than 2 blue and 1 yellow agents
(Panel C, right). Finally, agent 4 values how his new link affects his popularity, since he creates a new
indirect friendship for those who already have a link to him (agents 1,2 and 3). The utility of a link to agent
5 (which is yellow) when agents 1,2 and 3 are all blue (Panel D, left) is different than when agent 2 is yellow
and 1 and 2 are blue (Panel D, right).

The direct utility includes both costs and benefits and it may possibly be negative: when
only homophily enters payoffs of direct links, the net utility uij is positive if i and j belong
to the same group, while it is negative when they are of different types. This is illustrated
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in Panel A of Figure 1 with a simple network of 8 agents. Each agent can belong to either
the blue group or the yellow group. The link that agent 4 forms to individual 5 provides
different direct utility in the two networks, since the identity of 5 is different: blue for the
left network and yellow for the right one. In many models this component is parameterized
as uij = bij − cij, where bij indicates the (gross) benefit and cij the cost of forming the
additional link gij. I use the notation uij, since it does not require assumptions on the cost
function.

The players receive additional utility mij if the link is mutual; friendship is valued differ-
ently if the other agent reciprocates. An agent may perceive another individual as a friend,
but that person may not perceive the relationship in the same way. Panel B of Figure 1
isolates this component: a link from agent 4 to agent 5 has a different value if agent 5 recip-
rocates (right network).

The players value the composition of friends of friends. When i is deciding whether to
befriend j, she observes j’s friends and their socioeconomic characteristics. Each of j’s friend
provides additional utility v(Xi, Xk) to i. In this model, an agent who has the opportunity
to form an additional link, values a white student with three Hispanic friends as a different
good than a white student with two white friends and one African American friend.9 In
other words, individuals value both exogenous heterogeneity and endogenous heterogeneity:
the former is determined by the socioeconomic characteristics of the agents, while the latter
arises endogenously with the process of network formation. I assume that only friends of
friends are valuable and they are perfect substitutes: individuals do not receive utility from
two-links-away friends. In Panel C of Figure 1, from the perspective of agent 4, agent 5 in
the left network is a different good than agent 5 in the right network, since the composition
of his friends is different.

The fourth component corresponds to a popularity effect. Consider Panel D in Figure 1.
When agent 4 forms a link to agent 5, he automatically creates an indirect link for agents
1, 2 and 3. Thus agent 4 generates an externality. For example, suppose there is homophily
in indirect links. Then in the left network the externality is negative for all three agents (1,
2 and 3); and in the right network it is negative for 1 and 3, but positive for 2. Therefore,
in the left network the popularity of 4 goes down, while in the right network the fall in
popularity is less pronounced.

Conditional on the meeting mt = ij, player i updates the link gij to maximize his current
utility, taking the existing network gt−ij as given. I assume that the agents do not take
into account the effect of their linking strategy on the future evolution of the network.
The players have complete information, since they can observe the entire network and the
individual attributes of all agents. Before updating his link to j, individual i receives an
idiosyncratic shock ε ∼ F (ε) to his preferences that the econometrician cannot observe.
This shock models unobservables that could influence the utility of an additional link, e.g.

9A similar assumption is used in De Marti and Zenou (2009) where the agents’ cost of linking depend
on the racial composition of friends of friends. Their model is an extension of the connection model of
Jackson and Wolinsky (1996), and the links are formed with mutual consent. The corresponding network is
undirected.
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mood, gossips, fights, etc. Player i links agent j at time t if and only if it is a best response
to the current network configuration, i.e. gtij = 1 if and only if

Ui
(
gtij = 1, gt−1

−ij , X
)

+ ε1t ≥ Ui
(
gtij = 0, gt−1

−ij , X
)

+ ε0t. (2)

I assume that when the equality holds, the agent plays the status quo.10

ASSUMPTIONS. The model satisfies the following assumptions:

1. (Preferences) The payoffs are such that m (Xi, Xj) = m (Xj, Xi) and w (Xk, Xj) =
v (Xk, Xj) for all players i, j, k.

2. (Meetings) Any meeting is possible, i.e., ρ(ij|gt−1, X) = ρ(ij|gt−ij, X) > 0 for any pair
of players i, j.

3. (Shocks) Before deciding whether to update a link, players receive a stochastic shock
that follows a Type I extreme value distribution, i.i.d. among links and across time.

The first assumption about symmetry of mij is needed for identification: two individuals
with the same exogenous characteristics Xi = Xj (say two males, whites, enrolled in eleventh
grade) who form a mutual link receive the same uij and mij, but they may have different
utilities from that additional link because of the composition of their friends of friends and
their popularity. Therefore, this part of the assumption helps in identifying the utility from
indirect links and popularity.

When i forms a link to j, i creates an externality for all k’s who have linked her: any such
k now has an additional indirect friend, i.e. j, who agent k values by an amount v (Xk, Xj).
When w (Xk, Xj) = v (Xk, Xj), an individual i values his popularity effect as much as k
values the indirect link to j, i.e., i internalizes the externality he creates.11

The second assumption on the meeting process gurantees that any pair of agents can
meet. The main implication is that any equilibrium network can be reached with positive
probability. For example, a discrete uniform distribution satisfies this assumption.

Finally the third assumption allows the Markov chain to escape from the nash networks,
eliminating absorbing states and making the model ergodic.

As a consequence of these assumptions, the network formation process is a potential
game, where all the incentives of the players can be summarized by an aggregate function of
the network Q.

Q (g,X) =
n∑
i=1

n∑
j=1

gijuij +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkvik, (3)

10This assumption does not affect the main result and is relevant only when the distribution of the
preference shocks is discrete.

11This restriction of the preferences guarantees the model’s coherency in the sense of Tamer (2003). In
simple words, this part of the assumption guarantees that the system of conditional linking probabilities
implied by the model generates a proper joint distribution of the network matrix. Similar restrictions are
also encountered in spatial econometrics models (Besag, 1974) and in the literature on qualitative response
models (Heckman, 1978; Amemiya, 1981)
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The potential is such that, for any player i and any link gij we have

Q (gij, g−ij, X)−Q (1− gij, g−ij, X) = Ui (gij, g−ij, X)− Ui (1− gij, g−ij, X)

Consider two networks, g = (gij, g−ij) and g′ = (1 − gij, g−ij), that differ only with respect
to one link, gij, chosen by individual i: the difference in utility that agent i receives from the
two networks, Ui (g,X)−Ui (g′, X), is exactly equal to the difference of the potential function
evaluated at the two networks, Q (g,X) − Q (g′, X). That is, the potential is an aggregate
function that summarizes both the state of the network and the deterministic incentives of
the players in each state.

The model generates a Markov Chain of networks that converges to a uniques stationary
distribution π

π (g,X) =
exp [Q (g,X)]∑

ω∈G
exp [Q (ω,X)]

, (4)

In the long-run the systems spends more time in network states that have high potential.
It can be shown that these networks correspond to Nash equilibria of a model without any
shock to the preferences (Mele (2017a), Jackson and Watts (2001), Monderer and Shapley
(1996)).

3 Estimation Strategy

To estimate the model, I assume that the payoff functions depend on a vector of parameters
θ = (θu, θm, θv):

uij (θu) = u (Xi, Xj, θu)

mij (θm) = m (Xi, Xj, θm)

vij (θv) = v (Xi, Xj, θv)

Assuming that the observed network is a draw from the stationary distribution of the theo-
retical model, we can use the distribution in (4) as likelihood of the network data. However,
this imposes a computational challenge, since the likelihood depends on the normalizing
constant

c (G, X, θ) =
∑
ω∈G

exp [Q (ω,X, θ)] . (5)

whose exact evaluation is computationally infeasible even for very small networks. To
be concrete, consider a small network with n = 10 agents. From (??) we know that
c (G, X, θ) =

∑
ω∈G

exp [Q (ω,X, θ)]. To compute the constant at the current parameter θ

we would need to evaluate the potential function for all 290 w 1027 possible networks with 10
agents and compute their sum. This task would take a very long time even for a state-of-the
art supercomputer. In general with a network containing n players, we have to sum over
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2n(n−1) possible network configurations.12 Therefore direct evaluation of the likelihood is
impossible. It is easy to show that the first and second order conditions for the maximum
likelihood problem also depend on the normalizing constant. The same problem arises if we
use a Bayesian approach and standard Markov Chain Monte Carlo samplers to estimate the
posterior

p (θ|g,X) =
π (g,X, θ) p (θ)∫

Θ
π (g,X, θ) p (θ) dθ

. (6)

because equation (6) contains the normalizing constant in the likelihood.

3.1 Estimation Algorithm

To solve this challenging estimation problem, I use a variation of the exchange algorithm,
first developed by Murray et al. (2006) for distribution with intractable normalizing con-
stants and adapted to network models by Caimo and Friel (2011) and Mele (2017a). This
algorithm uses a double Metropolis-Hastings step to avoid the computation of the normal-
izing constant c (G, X, θ) in the likelihood.13

While several authors have proposed similar algorithms in the related literature on Ex-
ponential Random Graphs Models (ERGM),14 the models estimated with this methodology
typically have very few parameters and use data from very small networks. To the best of
my knowledge, this is the first attempt to estimate a high-dimensional model using data
from multiple networks.

In this section I describe the algorithm for a single network, while in the appendix I
provide the extension for multiple independent networks.15 This is especially important for
policy: schools may have unobserved differences that impact the network formation process
and using multiple networks may partially correct for that.

The idea of the algorithm is to sample from an augmented distribution using an auxiliary
variable. At each iteration, the algorithm proposes a new parameter vector θ′, drawn from a
suitable proposal distribution qθ(θ

′|θ); in the second step, it samples a network g′ (the aux-
iliary variable) from the likelihood π (g′, X, θ′); finally, the proposed parameter is accepted

12A supercomputer that can compute 1012 potential functions in 1 second would take almost 40 million
years to compute the constant once for a network with n = 10 players. The schools used in the empirical
section have between 20 and 159 enrolled students. This translates into a minimum of 2380 and a maximum
of 225122 possible network configurations.

13This improvement comes with a cost: the algorithm may produce MCMC chains that have very poor
mixing properties (Caimo and Friel, 2011) and high autocorrelation. I partially correct for this problem by
carefully calibrating the proposal distribution. In this paper I use a random walk proposal. Alternatively one
could update the parameters in blocks or use recent random block techniques as in Chib and Ramamurthy
(2009) to improve convergence and mixing.

14Caimo and Friel (2011) use the exchange algorithm to estimate ERGM. They improve the mixing of
the sampler using the snooker algorithm. Koskinen (2008) proposes the Linked Importance Sampler Aux-
iliary variable (LISA) algorithm, which uses importance sampling to provide an estimate of the acceptance
probability. Another variation of the algorithm is used in Liang (2010).

15When the data consist of several independent school networks, I use a parallel version of the algorithm
that stores each network in a different processor. Each processor runs the simulations independently and the
final results are summarized in the master processor, that updates the parameters for next iteration. Details
in Appendix.

10



with a probability αex(θ, θ
′), such that the Markov chain of parameters generated by these

update rules, has the posterior (6) as unique invariant distribution.

ALGORITHM 1. (APPROXIMATE EXCHANGE ALGORITHM)
Fix the number of simulations R. At each iteration t, with current parameter θt = θ and
network data g:

1. Propose a new parameter θ′ from a distribution qθ(·|θ),

θ′ ∼ qθ(·|θ). (7)

2. Simulate R networks from the stationary distribution of the model and collect the last

simulated network g′ ∼ P(R)
θ′ (g′|g), using the following steps (2.1) and (2.2) at each

iteration:

(2.1) At iteration r, with current network gr and proposed parameter θ′, start the sim-
ulations at network g and propose a network g∗ from a proposal distribution

g∗ ∼ qg (g∗|gr) (8)

(2.2) Update the network according to

gr+1 =

{
g∗ with prob. αmh(gr, g

∗)
gr with prob. 1− αmh(gr, g∗) (9)

where

αmh(gr, g
∗) = min

{
1,

exp [Q(g∗, X, θ)]

exp [Q(gr, X, θ)]

qg (gr|g∗)
qg (g∗|gr)

}
(10)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′, g′, g)
θ with prob. 1− αex (θ, θ′, g′, g)

where

αex(θ, θ
′, g′, g) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
. (11)

The appeal of this algorithm is that all quantities in the acceptance ratio (11) can be
evaluated: there are no integrals or normalizing constants to compute. I use a parallelized
version of the algorithm to estimate the model using multiple school networks. Here I explain
the intuition of how the sampler works, with the help of Figure 2; the algorithm’s details
and the proof of convergence are presented in Appendix B of Mele (2017a).

For ease of exposition, assume that the prior is relatively flat, so that p(θ)/p(θ′) ' 1.
Suppose we start the sampler from a parameter θ that has high posterior probability, given
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Figure 2: The Exchange Algorithm

A. Posterior Distribution B. Two Stationary Equilibria

The graph on the left is the posterior distribution, given the data. The graph on the right represents two
stationary equilibria of the model, one at parameter θ (blue) and one at parameter θ′ (red). The iteration
t starts with parameter θ. It is proposed to update the parameter using proposal θ′. The algorithm start
sampling networks from the stationary distribution at parameter θ′ (red) and quickly moves from g to g′.

The probability of accepting the proposed parameter θ′ is proportional to the ratio π(g′,X,θ)
π(g′,X,θ′)

π(g,X,θ′)
π(g,X,θ) , which

is small as indicated in the graph. In summary, a move from the high density region of the posterior (θ) to
a low density region (θ′) is likely to be rejected. For the same reasoning a move from θ′ to θ is very likely to
be accepted. Therefore the algorithm produces samples from the correct posterior distribution.

the data g. That is, there is good agreement between the data and the parameter, so it
is likely that the data are generated from a model with parameter θ. This is displayed on
the left panel of Figure 2. Now, suppose we propose a parameter θ′ that belongs to a low
probability region of the posterior. This means that there is a low probability that the
observed network g is generated by parameter θ′. As a consequence the ratio

p(θ′|g,X)

p(θ|g,X)
' π(g,X, θ′)

π(g,X, θ)

would be very small, as indicated in the right panel of Figure 2. Let’s start the network
simulations using parameter θ′. The sequence of simulated networks will start approaching
the new stationary distribution π(·, X, θ′), moving away from the stationary distribution
π(·, X, θ). This is indicated in Figure 2 with a simulation of 2 steps: starting from g we obtain
two networks, g1 and g′. Network g′ is closer to a high probability region of π(·, X, θ′) than
to a high probability region of π(·, X, θ), as long as the algorithm was run for a sufficiently
large number of steps R. It also follows that the ratio

π(g′, X, θ)

π(g′, X, θ′)
(12)

12



is small. Notice that the product of the likelihood ratios does not contain any normalizing
constant, that is

π(g′, X, θ)

π(g′, X, θ′)

π(g,X, θ′)

π(g,X, θ)
=

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(G, X, θ′)
c(G, X, θ)

c(G, X, θ)
c(G, X, θ′)

=
exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

The product (13) is contained in the probability (11), and thus the probability of accepting
the transition from θ to the proposed parameter θ′ is small. As a consequence, the proposed
parameter θ′ is very likely to be rejected. By the same reasoning, if we start the sampler at
θ′ and propose an update to θ, the transition is very likely to be accepted.

In summary, the sampler is likely to accept proposals that move towards high density
regions of the posterior, but it is likely to reject proposals that move towards low density
regions of the posterior. Therefore, it produces samples of parameters that closely resemble
draws from the posterior distribution (6).

The formal statement about convergence and ergodicity is contained in Theorem 6 of
Mele (2017a). The theorem states that the algorithm produces good samples as long as the
number of simulated networks R in step 2 of estimation algorithm simulations is large enough
and the posterior simulations are run for a sufficient number of iterations. The researcher
can improve convergence through a careful choice of the initial network and proposal distri-
butions. In the empirical implementation of the algorithm, I use several alternative network
proposals qg (·|·). First, a move that updates only one link per iteration, proposing to swap
the link value. At each iteration a random pair of agents (i, j) is selected from a discrete
uniform distribution, and it is proposed to swap the value of the link gij to 1−gij. Second, to
improve convergence, I allow the sampler to propose bigger moves: with a small probability
pinv, the sampler proposes a to invert the network matrix, i.e. g′ = 1− g, and the proposal
is accepted with probability αmh(g, g

′).16 The network simulations are started at the ob-
served network g. There are two reasons for this choice. First, in the high density region
of the posterior the observed network g must have high probability according to the model.
Second, Lemma 1 in Appendix B of Mele (2017a) shows that this choice guarantees faster
convergence of the approximate posterior simulation algorithm to the correct posterior.

Finally, an important tuning parameter of the algorithm is R, the number of network
simulations to be performed in the second step. As R →∞ the algorithm converges to the
exact exchange algorithm of Murray et al. (2006), producing exact samples from the poste-
rior distribution. At the same time an higher value of R would increase the computational
cost and result in a higher rejection rate for the proposed parameters. I do not propose an
optimal way to choose R, but I provide some evidence with simulated data in Appendix
B, showing that there is not much difference in the estimates or convergence using different

16This move is suggested in Geyer (1992) and Snijders (2002). Snijders (2002) argues that this is particu-
larly useful in case of a bimodal distribution. This is the case for some models in the homogeneous case, as
shown in Mele (2017a).
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R’s. The value of R has a stronger effect on the standard deviation than on the mean of the
posterior, as one would expect.

3.2 Identification and Practical Implementation

I assume that the utility functions u, m and v depend linearly on a vector of parameters.
Define θu = (θu1, θu2, ..., θuP )′, θm = (θm1, θm2, ..., θmL)′ and θv = (θv1, θv2, ..., θvS)′. Define
the functions H : RA × RA → R.

uij = u (Xi, Xj, θu) =
P∑
p=1

θupHup (Xi, Xj) = θ′uHu (Xi, Xj)

mij = m (Xi, Xj, θm) =
L∑
l=1

θmlHml (Xi, Xj) = θ′mHm (Xi, Xj)

vij = v (Xi, Xj, θv) =
S∑
s=1

θvsHvs (Xi, Xj) = θ′vHv (Xi, Xj)

This assumption leaves room for many interesting specifications. In particular, the func-
tions H do not exclude interactions among different characteristics, for example interactions
of race and gender of both individuals. We can consider different specifications, including
different sets of variables for direct, mutual and indirect links. Interactions of individual and
network-level attributes are also possible.

The main consequence of the linearity assumption is that the stationary equilibrium of
the model belongs to the exponential family (Lehman (1983)) and it can be written in the
form

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

, (13)

where θ = (θu, θm, θv)
′ is a (column) vector of parameters and t (g,X) = (t1 (g,X) , ..., tK (g,X))

is a vector of sufficient statistics for the network formation model. The latter vector can con-
tain the number of links, the number of whites-to-whites links, the number of male-to-female
links and so on. Interactions between different variables are possible, e.g. the number of
black-males-to-white-females links, or interactions of individual controls with school-level
controls.

This likelihood is very similar to the one of exponential random graph models (Snijders
(2002),Frank and Strauss (1986)). My theoretical model can be interpreted as providing the
microfoundations for exponential random graphs. In this sense, we can interpret the ERGM
as the stationary equilibrium of a strategic game of network formation, where myopic agents
follow a stochastic best response dynamics and utilities are linear functions of the parameters.

14



The identification of parameters follows from the theory of exponential families (Lehman,
1983). Identification is guaranteed as long as the sufficient statistics t(g,X) are not linearly
dependent, provided that the data consists of multiple independent network observations.

The linear specification allows for utility functions involving network-level controls, when
estimation is performed using multiple networks. This can be achieved by a specification of
the parameters such as

θp = θp0 +
C∑
c=1

θpcZc (14)

where Zc is a network-level variable. The estimation methodology presented above can be
applied to this specification without any change. However, estimation of a model with unob-
served heterogeneity would require significant additional computational effort (see Appendix
C in Mele (2017a)).

I choose somewhat vague priors for the parameters to extract most of the information
from the data. I assume independent normal priors

p (θ) = N (0, 3IP ) , (15)

where P is the number of parameters.
The proposal distribution for the posterior simulation is

qθ(·|θ) = N (0, δΣ) , (16)

where δ is a scaling factor and Σ is a covariance matrix. I use an adaptive procedure to
determine a suitable Σ. I start the iterations with Σ = λIP , where λ is a vector of stan-
dard deviations. I choose λ so that the sampler accepts at least 20%-25% of the proposed
parameters, as is standard in the literature (Gelman et al., 2003; Robert and Casella, 2005).
I run the chain and monitor convergence using standard methods. Once the chains have
reached approximate convergence, I estimate the covariance matrix of the chains and use it
as an approximate Σ for the next set of simulations. The scaling factor is δ = 2.382/P as
suggested in Gelman et al. (1996).

The network sampler uses a proposal qg (g|g′), that selects a link to be updated at each
period according to a discrete uniform distribution. The probability of network inversion is
pinv = 0.01.

All the posterior distributions shown in the following graphs are obtained with a sim-
ulation of 100000 Metropolis-Hastings updates of the parameters. These simulations start
from values found after extensive experimentation with different starting values and burn-in
periods, monitoring convergence using standard methods. For each parameter update, I
simulate the network for 3000 iterations to collect a sample from the stationary distribution.
In Appendix, I show evidence that increasing the number of network simulations above 3000
does not change the estimates for networks of similar size as the ones used in our data.
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Figure 3: A School Network

white=Whites; blue = African Americans; yellow = Asians; green = Hispanics; red = Others

Note: The graphs represent the friendship network of a school extracted from AddHealth. Each
dot represents a student, each arrow is a friend nomination. The colors represent racial groups.
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3.3 The Add Health Data

The National Longitudinal Study of Adolescent Health (Add Health) is a dataset contain-
ing information on a nationally representative sample of US schools. The survey started
in 1994, when the 90118 participants were entering grades 7-12, and the project collected
data in four successive waves.17 Each student responded to an in-school questionnaire, and
a subsample of 20745 was given an in-home interview to collect more detailed information
about behaviors, characteristics and health status. In this paper I use only data from the
saturated sample of Wave I, containing information on 16 schools. Each student in this
sample completed both the in-school and in-home questionnaires, and the researchers made
a significant effort to avoid any missing information on the students.18

I exclude the two largest schools, school 58 and 77, which have respectively 811 and 1664
students, while the third largest school has 159 students. This is to improve the speed of the
computations: the estimation routine is much faster when schools are of similar size, since
the parallel version of the exchange algorithm can propose a new parameter vector only after
all the school-level simulations are done. Therefore the speed of the algorithm depends on
the simulation speed of the largest school. The simulation of a school with more than 800 or
1600 students would significantly slow down the estimation. My final sample includes 1139
students enrolled in 14 schools.

The in-school questionnaire collects the social network of each participant. Each student
was given a school roster and was asked to identify up to five male and five female friends.19

I use the friendship nominations as proxy for the social network in a school. The resulting
network is directed : Paul may nominate Jim, but this does not necessarily imply that Jim
nominates Paul.20 The model developed in this paper takes this feature of the data into
account.

A sub-sample of 20745 students was also given an in-home questionnaire, that collected
most of the sensible data. I use data on racial group, grade and gender of individuals. A stu-
dent with a missing value in any of these variables is dropped from the sample. Each student
that declares to be of Hispanic origin is considered Hispanic. The remaining non-Hispanic
students are assigned to the racial group they declared. Therefore the racial categories are:
White, Black, Asian, Hispanic and Other race. Other race contains Native Americans.

Additionally, I control for homophily in income. I construct the income of the family us-
ing a question from the parent questionnaire.21 In the estimated models I control for income

17More details about the sampling design and the representativeness are contained in Moody (2001) and
the Add Health website http://www.cpc.unc.edu/projects/addhealth/projects/addhealth

18While this sample contains no missing covariate information for the students, there are several missing
values for the parental variables.

19One can think that this limit could bias the friendship data, but only 3% of the students nominated 10
friends (Moody, 2001). Moreover, the estimation routine could be easily extended to deal with missing links,
as reported in Appendix.

20Some authors do not take into account this feature of the data and they recode the friendships as mutual:
if a student nominates another one, the opposite nomination is also assumed.

21There are several cases in which the family income is missing. For those observations, I imputed values
drawn from the unconditional income distribution of the community. An alternative but computationally
very costly alternative is to introduce an additional step in the simulation, in which the imputation of missing
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difference between the students and income levels.
There may be some unobservable variables that affect network formation. For example

some students may be ”cool” and receive more friendship links than others. To partially
control for such effects, I use information from the interviewer remarks about the physical at-
tractiveness and personality of the student interviewed. I define a dummy variable ”beauty”,
which is equal to 1 if the interviewer told that the students was very attractive. Analogously,
the dummy ”personality” is equal to 1 if the interviewer responded that the personality of
the student was very attractive. Additionally, I control for school fixed effects using school
dummies. As an alternative to such approach, in Appendix I provide an extension of the
model and estimation method that allows for unobserved heterogeneity with a significant
additional computational cost.

Descriptive statistics are in Table 1. The smallest school has 20 enrolled students while
the largest used in estimation has 159 students. There is a certain amount of variation in
the number of links: some schools are more social and form many links per capita, while
other schools have very few friendship nominations. The ratio of boys to girls is balanced in
almost all schools, except school 369, where female students are large majority.

Panel A summarizes the racial composition. Many schools are almost racially homoge-
neous. School 1, 28, 126 and 175 are more diverse as reflected in the Racial Fragmentation
index. This is an index that measure the degree of heterogeneity of a population. It is
interpreted as the probability that two randomly chosen students in the school belong to
different racial groups.22 An index of 0 indicates that there is only one racial group and the
population is perfectly homogeneous. Higher values of the index represents increasing levels
of racial heterogeneity. Panel B summarizes the grade composition. Most schools offer all
grades from 7th to 12th, with homogeneous population across grades. Several schools only
have lower grades.

Panel C analyzes the racial and gender segregation of each school friendship network.
The level of segregation is measured with the Freeman (1972) segregation index. If there is
no segregation, the number of links among individuals of different groups does not depend
on the group identity. The index measures the difference between the expected and actual
number of links among individuals of different groups. An index of 0 means that the actual
network closely resembles one in which links are formed at random. Higher values indicate
more segregation. The index varies between 0 and 1, where the maximum corresponds to a
network in which there are no cross-group links.

Since most schools are racially homogeneous, the measured segregation is zero. Schools
with a racially diverse student population show high level of segregation for each racial group.
On the other hand gender segregation is quite low and homogeneous across schools.

incomes is done at each iteration.
22If there are K racial groups and the share of each race is sk, the index is

FRAG = 1−
K∑
k=1

(sk)2 (17)
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4 Empirical Results

4.1 Posterior estimates

Table 2: Posterior Distribution, Structural Model

mean median std. dev. 5 pctile 95 pctile
A. Direct utility (uij)

CONSTANT -4.8615 -4.8325 0.3124 -5.4380 -4.4058
SAME GENDER 0.1340 0.1366 0.1091 -0.0517 0.3062
SAME GRADE 2.0287 2.0262 0.1298 1.8141 2.2460
WHITE-WHITE 0.4408 0.4383 0.1654 0.1714 0.7288
BLACK-BLACK 0.6802 0.6886 0.1312 0.4704 0.8727
HISP-HISP 0.1649 0.1742 0.0856 0.0143 0.2904
ATTRACTIVE i (Physical) -0.0091 -0.0100 0.1547 -0.2621 0.2546
ATTRACTIVE j (Physical) 0.1876 0.1727 0.1490 -0.0300 0.4442
ATTRACTIVE i (Personality) 0.0095 0.0093 0.1411 -0.2196 0.2426
ATTRACTIVE j (Personality) 0.2370 0.2337 0.1209 0.0401 0.4383
LOG OF (INCOME i/INCOME j) -0.0182 -0.0172 0.0266 -0.0630 0.0230
LOG OF (INCOME i × INCOME j) 0.0685 0.0685 0.0277 0.0237 0.1147
FRACTION WHITES -1.5015 -1.4433 0.4602 -2.3086 -0.8500
FRACTION BLACKS 1.9019 1.9234 0.1829 1.5583 2.1614
FRACTION HISP 0.2845 0.2547 0.5496 -0.5504 1.2862
WHITE-WHITE * % WHITES -0.5351 -0.5470 0.1752 -0.7980 -0.2179
BLACK-BLACK * % BLACKS -0.1780 -0.1227 0.3854 -0.8700 0.3626
HISP-HISP * % HISP 1.4607 1.5407 1.4443 -0.9003 3.5895
SCHOOL 1 -1.3334 -1.3416 0.4418 -2.0527 -0.6015
SCHOOL 2 1.6555 1.6527 0.2685 1.2191 2.1068
SCHOOL 3 0.3559 0.3461 0.3108 -0.1381 0.8907
SCHOOL 4 0.8271 0.8159 0.3129 0.3315 1.3665
SCHOOL 5 1.1032 1.1076 0.2803 0.6407 1.5603
SCHOOL 6 -0.7804 -0.7944 0.2720 -1.2053 -0.3189
SCHOOL 7 0.8817 0.8709 0.2863 0.4229 1.3574
SCHOOL 8 -0.7325 -0.7014 0.3790 -1.4188 -0.1569
SCHOOL 9 -0.0591 -0.1104 0.3794 -0.6177 0.6102
SCHOOL 10 2.5418 2.5386 0.3069 2.0397 3.0434
SCHOOL 11 -1.6844 -1.6501 0.3983 -2.3642 -1.0801
SCHOOL 12 1.8666 1.8578 0.2731 1.4308 2.3121
SCHOOL 13 -0.6248 -0.6084 0.3126 -1.1625 -0.1363

B. Mutual utility (mij)

CONSTANT 3.0074 3.0012 0.3501 2.4445 3.5969
SAME GENDER 1.2099 1.1865 0.1862 0.9457 1.5733
SAME GRADE -1.6620 -1.6505 0.2772 -2.1371 -1.2159
WHITE-WHITE 0.1821 0.1950 0.1450 -0.0651 0.4044
BLACK-BLACK -0.0707 -0.0591 0.2547 -0.4805 0.3512
HISP-HISP 0.7850 0.7719 0.1337 0.5703 1.0088
BOTH ATTRACTIVE (Physical) 0.1050 0.1037 0.3255 -0.4228 0.6380
BOTH NOT ATTRACTIVE (Physical) 0.0577 0.0693 0.2180 -0.3156 0.3920
BOTH ATTRACTIVE (Personality) -0.1538 -0.1370 0.2371 -0.5641 0.2074
BOTH NOT ATTRACTIVE (Personality) -0.1279 -0.1446 0.1762 -0.4055 0.1924

C. Indirect utility and Popularity (vij)

CONSTANT -0.1116 -0.1099 0.0523 -0.2002 -0.0233
SAME GENDER -0.0992 -0.0971 0.0414 -0.1698 -0.0352
SAME GRADE 0.0224 0.0214 0.0288 -0.0246 0.0706
WHITE-WHITE 0.1535 0.1514 0.0484 0.0765 0.2343
BLACK-BLACK 0.1657 0.1613 0.0545 0.0831 0.2638
HISP-HISP 0.1673 0.1678 0.1083 -0.0141 0.3435

Estimated posterior distribution for the full structural model. The estimates are obtained with a sample of
100000 parameter simulations, and 3000 network simulations for each parameter proposal.

In Table 2, I show the estimation results for the full structural model, using the 14 schools
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in the Add Health saturated sample. The table summarizes the marginal posterior distri-
butions of the estimated parameters with posterior mean, median, standard deviation, 5th
and 95th quantiles. Figures 4 and 5 display the marginal posterior distributions in blue and
the posterior mean as a vertical red line.

Each estimate measures the marginal effect of the variable: for example, the parameter
associated with the direct utility of WHITE-WHITE measures the marginal utility of a white
student when forming a link to another white student, other things being equal.

Panel A shows the estimates for the direct utility. There is evidence of homophily in pref-
erences: individuals prefer to form friendship links to students of the same gender, grade,
race, other things being equal. Racial homophily is not homogenous across groups: African
Americans show stronger preference for same race students, while the group of Hispanics has
the lowest magnitude. Grade homophily is also very high.

Furthermore, there is a clear difference in how the different racial groups respond to
a change in the fraction of their own group in the population. While Whites and African
Americans’ preference for same race students decreases with the fraction of their group in the
population, the opposite occurs for Hispanics. This result is important, because it implies
that different racial groups have different responses to the desegregation policies: some group
may engage more in interracial friendships, while some group may segregate even more.

Physically attractive students have similar propensity to form friendships than the rest
of the population. The same holds for students with very attractive personalities. Nonethe-
less, there is a propensity to form links to individuals that are physically attractive and have
attractive personalities. Income differences decrease the likelihood of friendship, while higher
income levels increase the number of friendships formed. The magnitude of the income ef-
fects is smaller than the effect of racial preferences. The total number of friends is higher in
schools with higher fraction of minorities. The estimates for the school dummies show that
there is substantial heterogeneity in the network formation process across schools, which is
not accounted for by the individual characteristics.

Panel B shows the estimated parameters of the mutual utility. An additional mutual link
provides positive additional utility. There is evidence of homophily in mutual links for gen-
der, Whites and Hispanics. A mutual link to a student of the same grade decreases utility.
The mutual link provides additional utility if the students have similar physical attractive-
ness and their personalities do not coincide.

Panel C contains estimates of the indirect and popularity effects. The negative value of
the constant can be interpreted as a congestion effect: linking to students with many friends
decreases utility. There is evidence of homophily in the indirect and popularity effects (ex-
cept for gender), which increases the incentives of the students to segregate.

As a benchmark to evaluate policy experiments, I also estimated a model without mu-
tual, indirect and popularity effects. The results are shown in Table 3. In this specification,
the homophily effects in the direct utility are stronger than in the richer model. This is
because in the full model part of the homophily effects are captured by indirect utility and
popularity. Whites have much higher marginal utility of forming a link to a person of the
same race than in the full model. Moreover, this specification would suggest that Whites
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Figure 4: Posterior Distribution, Full Structural Model

Estimated posterior distribution for the full structural model. Each graph shows the density estimate of the
simulation output. The red line indicates the posterior mean. The estimates are obtained with a sample of
100000 parameter simulations and 3000 network simulations for each proposed parameter.

preferences for same race contacts are stronger than Blacks, which is the opposite result
found in the full model.

An increase in the fraction of same race individuals has asymmetric effects on the racial
groups: Whites and Hispanics decrease their links, while African Americans form more
friendships. This is different from the full model.
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Figure 5: Posterior Distribution, Full Structural Model (continued)

Estimated posterior distribution for the full structural model. Each graph shows the density estimate of the
simulation output. The red line indicates the posterior mean. The estimates are obtained with a sample of
100000 parameter simulations and 3000 network simulations for each proposed parameter.

4.2 Policy Experiments

I use the estimated model to predict how alternative policies affect the network structure.
Policy makers may be interested in pursuing policies that promote racial integration, or they
may consider policies that create separate schools for boys and girls. Simulations of the
model in alternative scenarios can provide a valuable benchmark on the possible effects of
such policies.
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Table 3: Posterior Distribution, Direct Utility only

mean median std. dev. 5 pctile 95 pctile

CONSTANT -5.3194 -5.3041 0.9443 -6.8908 -3.7122
SAME GENDER 0.4041 0.4033 0.0882 0.2610 0.5523
SAME GRADE 2.2564 2.2567 0.1048 2.0874 2.4300
WHITE-WHITE 1.6410 1.6368 0.2626 1.2165 2.0803
BLACK-BLACK 0.7567 0.7627 0.3475 0.1711 1.3160
HISP-HISP 0.9513 0.9561 0.3247 0.4061 1.4712
ATTRACTIVE i (Physical) 0.0764 0.0770 0.1401 -0.1603 0.3046
ATTRACTIVE j (Physical) 0.1713 0.1699 0.1353 -0.0461 0.4014
ATTRACTIVE i (Personality) 0.0385 0.0405 0.1403 -0.1965 0.2647
ATTRACTIVE j (Personality) 0.2914 0.2900 0.1354 0.0652 0.5131
LOG OF INCOME i/INCOME j -0.0114 -0.0114 0.0248 -0.0521 0.0296
LOG OF INCOME i × INCOME j 0.0669 0.0663 0.0254 0.0274 0.1107
FRACTION WHITES -1.0100 -0.9778 1.0678 -2.8420 0.6912
FRACTION BLACKS 0.5905 0.6719 0.9179 -0.9582 2.0499
FRACTION HISP -2.6683 -2.6526 1.7131 -5.6238 0.1307
WHITE-WHITE * FRACTION WHITE -1.4795 -1.4737 0.3316 -2.0371 -0.9475
BLACK-BLACK * FRACTION BLACKS 0.8718 0.8553 0.6620 -0.2192 1.9868
HISP-HISP * FRACTION HISP -0.0297 0.0176 1.6081 -2.7317 2.5566
SCHOOL 1 -0.2844 -0.2649 0.6093 -1.2991 0.6866
SCHOOL 2 1.6957 1.6963 0.3413 1.1257 2.2615
SCHOOL 3 -0.1003 -0.0925 0.4302 -0.8377 0.5974
SCHOOL 4 0.5644 0.5647 0.4066 -0.1070 1.2481
SCHOOL 5 0.8732 0.8790 0.3962 0.1987 1.5249
SCHOOL 6 -0.2655 -0.2681 0.5927 -1.2511 0.7287
SCHOOL 7 0.6230 0.6206 0.3994 -0.0366 1.2829
SCHOOL 8 0.2385 0.2458 0.8298 -1.1460 1.6260
SCHOOL 9 -0.2277 -0.2259 0.5018 -1.0423 0.6200
SCHOOL 10 2.5708 2.5787 0.4515 1.8136 3.3045
SCHOOL 11 -0.6995 -0.7252 1.1728 -2.6429 1.2818
SCHOOL 12 1.4434 1.4477 0.3925 0.7884 2.0838
SCHOOL 13 -0.1609 -0.1605 0.4667 -0.9391 0.6283

Estimated posterior distribution for the model with utility from direct links only. The estimates are obtained
with a sample of 100000 parameter simulations, and 3000 network simulations for each parameter proposal.

I study the effectiveness of busing programs in promoting interracial integration. Using
the posterior distribution estimated in Table 2, I simulate several busing programs that re-
distribute students of different racial groups among schools 88 and 106 of my sample. These
are two schools with an homogeneous student population: 98.9% Whites and 96.3% African
Americans, respectively. The simulated policies randomly select several (white) students
from school 88 and enroll them in school 106; the same number of (black) students is ran-
domly selected from school 106 and enrolled in school 88. This allows me to modify the
ratio of Whites and African Americans in both schools and predict the levels of friendship
segregation and welfare implied by the policy.23

Using 1000 draws from the estimated posterior distribution, I run the network formation
model for 10000 iterations after the policy change (using ALGORITHM 1) and compute seg-
regation and welfare of the realized networks. I use Freeman’s segregation index (see Freeman

23There are several alternative ways to implement this desegregation policy. For example, one could select
students based on their race, while keeping a balance for gender and income distribution. My implementation
is simple. I order students of different racial groups based on their numerical ID in the data (from lowest to
highest). If I need to implement a policy that re-assigns 10 students, I select the first 10 students in the list.
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Figure 6: Policy Experiments for School 88 (Structural Model)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

Figure 7: Policy Experiments for School 88 (only direct links)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

(1972) and Appendix B) to measure segregation for the relevant groups: Whites, African-
Americans and gender. The welfare measure is the total utility of the school, i.e. the sum of
all students’ utilities. I simulate the model using both the full structural specification and
the specification with direct utility only, to compare the policy implications. The results of
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the simulations are shown in Figures 6, 7, 8 and 9. The figures report the average segrega-
tion and welfare as a function of the fraction of Whites and African Americans in the school.
The blue dots are the average welfare and segregation obtained from each simulation. The
vertical dotted line indicates the situation of perfect integration among schools, i.e. a policy
where the students of each racial group are equally split among the schools. The red dotted
line is a cubic polynomial interpolation of the simulation results.24

The simulations provide several results. First, a policy that implements perfect integra-

Figure 8: Policy Experiments for School 106 (Structural Model)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

tion among the two schools is not optimal, both in terms of welfare and segregation. Perfect
racial integration among the schools does not minimize expected segregation in the network
of friendships and does not maximize welfare. A certain degree of segregation among schools
is necessary to increase interracial contact and welfare within schools.

Second, the policy does not have the same effect on both schools. The comparison of
figures 6 and 8 shows that the relationship between the fraction of each racial group and
segregation is not the same. For school 88 the relationship is cubic, while for school 106 is
quadratic. This further complicates the design of a good desegregation program.

Third, the model with only direct utility provides different policy recommendations than
the full specification with mutual utility, indirect utility and popularity effects. This is quite
evident from the graphs on welfare. For school 88, an increase of African American enroll-
ment which does not exceed 50%, does not cause a dramatic change in welfare. The picture is
completely different when looking at Figure 7. In addition, the levels of segregation predicted
by the full specification are more extreme than the ones under the simpler specification.

24The curve is fitted using least squares and all the coefficients are statistically significant.
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Figure 9: Policy Experiments for School 106 (only direct links)

The policy experiment consists of swapping African American and White students among schools 88 and
106. The result is a change in the fraction of racial groups in the schools. The blue dots are the average
segregation or welfare obtained in the simulations for each policy experiment. The vertical dotted line
indicates the perfect integrated case. The red dotted line displays a cubic polynomial interpolation of the
simulation results. Each simulated result was obtained with a sample of 1000 draws from the posterior
distribution and a 10000 iterations of the network formation model for each posterior draw.

5 Conclusions

This paper analyzed racial segregation in schools, using a structural model of network forma-
tion. The model generates segregation as an equilibrium outcome and allows me to estimate
the preferences for friends belonging to the same racial group. Furthermore, the payoffs of
the agents allow for homophily in indirect friendships.

I find homophily by race, both in direct and indirect links. My specification allows
homophily to vary with the fraction of the racial groups in the school: an increase in the
fraction of white students decreases the propensity of white students to form links within
the same racial group; this is not the case for hispanics or blacks. These differences are
important to understand the effect of policies that modify the relative shares of groups in
the school.

To illustrate this point, I explore different desegregation policies in US schools. The
model simulations provide predictions about the expected levels of segregation and welfare
implied by busing programs. Perfect integration among schools could deliver unexpected
results in some contexts: segregation may increase and welfare decrease. In addition, the
busing program may have different effects in different schools, because of the different racial
composition and the heterogeneity of preferences for same race friends. These results suggest
that desegregation policies must be carefully designed to avoid unexpected outcomes.
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A Computational Details

A.1 Convergence Experiments

In this section, I provide an overview of the convergence properties of the algorithm using
examples with artificial data. Assume a toy model with three parameters, with an utility
function of the following form

Ui(g,X) =
n∑
j=1

gijθ1 +
n∑
j=1

gijgjiθ2 +
n∑
j=1

gij

n∑
k 6=i,j;k=1

gjkθ3 +
n∑
j=1

gij

n∑
k 6=i,j;k=1

gkiθ3 (18)
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Figure 10: Convergence to the high density posterior region

Each graph shows convergence to the high density region of the posterior distribution. The curves with
different colors represent chains started at overdispersed initial values. The solid black line represent the
parameter that generated the data. Convergence is very fast and we can use the initial 2000 iterations as
burn-in. In this example the network has n = 50 agents and the number of network simulations per proposal
is R = 3000.

The artificial data are generated using the vector of parameters

θ = (−2.0, 0.5, 0.01) (19)

To obtain the network dataset for the estimation, the network simulation algorithm is started
at a random network and then ran for 1 million iterations. The initial random network is
generated by assuming each link is independent and the probability of a link is p = .2. The
last iteration of this long simulation is used as dataset in all the estimation exercises below.
I report results for networks with n = 50 and n = 100 agents.

To check if the exchange algorithm converges to the correct region of the parameter
space, the parameter simulations are started from 5 over-dispersed starting values

θ1 = (−2.0, 0.5, 0.01)

θ2 = (−10.0, 5.0, 1.0)

θ3 = (10.0,−5.0,−1.0)

θ4 = (−3.0,−0.05, 0.3)

θ5 = (−20.0, 15.0,−0.3)

In Figure 10, I display the convergence of the simulations to the high density region of the
posterior. In this example the number of network simulations for each parameter proposal
is R = 3000.25 The solid horizontal black line represents the parameter that generated the
data. Each color represents a simulation started at one of the initial values above. After 2000
iterations all the chains have reached approximate convergence to the region of the posterior
that contains the data generating parameters. In Figure 11, I show the autocorrelation

25Similar results hold for different R values.
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Figure 11: Convergence, autocorrelation functions

Each graph is the autocorrelation function of the chains generated by the exchange algorithm.

functions for the same example. In this example the autocorrelation disappears after 200
lags. This is mainly due to the small amount of parameters in this toy model. High-
dimensional models show more persistent autocorrelation of the chains. As a consequence,
the length of the simulations for the empirical application is much longer. In Figure 12 I
show the same convergence properties of Figure 10 by plotting two parameters in each graph.
I show 3 snapshots of the simulations: at 500, 1000 and 2000 iterations. The dashed lines
intersect at the parameter values that generated the data. After 500 iterations (Panel A)
almost all chains have converged to the high density region. The purple chain converges
after 2000 iterations: this is because this chain corresponds to the 5th starting value, which
is the quite far from the parameter that generated the network. Table 4 reports the result
of estimations using different network simulation lengths, with a network of n = 50 players.
The table suggests that R = 1000 is maybe too small, while there is not much difference
among the remaining estimation results. In Table 5, I show similar results for a network
with n = 100 players and starting the simulations at a parameter vector (-20.0,15.0,-0.3).26

For this network size, R = 3000 would sufficient. This is the amount of simulation used in
the empirical application.

In summary, convergence in this toy model is quite fast. For high-dimensional models
convergence is slower, but reasonable, in the order of 50 or 100 thousands iterations. One

26Similar results hold for alternative starting values.
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Figure 12: Convergence of the simulations

Panel A. 500 iterations

Panel B. 1000 iterations

Panel C. 2000 iterations

Three snapshots of the simulations at 500, 1000 and 2000 iterations of the fast exchange algorithm. The
true parameter value is indicated by the intersection of the dashed lines. After 500 iterations only few chains
have converged close to the true parameters. After 1000 the remaining chains have almost reached the high
density region of the posterior. At 2000 iterations the algorithm has reached approximate convergence for
all the chains.

possible strategy is to use a small R for the initial simulations: when the chain reaches
approximate convergence we can increase the number of network simulations and estimate
the posterior with higher precision.

A.2 Parallel estimation with multiple networks

When data from multiple independent networks are available the estimation routines are
easily adapted. Assume the researcher has data from C networks: let gc and Xc denote the
network matrix and the individual controls for network c, c = 1, ..., C. The aggregate data
are denoted as g = {g1, ..., gc} and X = {X1, ..., Xc}.
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Table 4: Convergence Experiments, n = 50
Starting value: (-2.00,0.50,0.01)

true R=1000 R=2000 R=3000 R=5000
θ1 -2.000 mean -2.0165 -2.0643 -2.077 -2.0838

s.d. 0.2629 0.2018 0.1845 0.1635
mc s.e. 0.0125 0.0069 0.0063 0.0051

θ2 0.500 mean 0.5387 0.6083 0.6207 0.6158
s.d. 0.5519 0.4435 0.4144 0.4076

mc s.e. 0.0338 0.0294 0.0189 0.0279
θ3 0.010 mean 0.0043 0.0121 0.0147 0.0175

s.d. 0.0262 0.0201 0.0187 0.0165
mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value: (-10.0,5.0,1.0)
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0131 -2.0651 -2.0688 -2.0673
s.d. 0.2643 0.2013 0.1814 0.1655

mc s.e. 0.0137 0.0067 0.0057 0.0046
θ2 0.500 mean 0.5542 0.6181 0.6149 0.6571

s.d. 0.5506 0.4425 0.4228 0.4046
mc s.e. 0.0363 0.0279 0.029 0.022

θ3 0.010 mean 0.0041 0.0119 0.0143 0.0157
s.d. 0.0267 0.0201 0.0185 0.0167

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value: (10.0,-5.0,-1.0)
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0287 -2.0583 -2.0656 -2.0686
s.d. 0.2548 0.2072 0.1883 0.164

mc s.e. 0.0099 0.0081 0.0085 0.0043
θ2 0.500 mean 0.5723 0.6028 0.6275 0.6593

s.d. 0.5418 0.4473 0.4084 0.3844
mc s.e. 0.034 0.0224 0.0283 0.0207

θ3 0.010 mean 0.0058 0.0113 0.0128 0.016
s.d. 0.0255 0.0211 0.0203 0.0167

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value: (-3.0,-0.05,0.3)
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.016 -2.0727 -2.0884 -2.0724
s.d. 0.2574 0.2033 0.1842 0.1625

mc s.e. 0.01 0.0064 0.007 0.0051
θ2 0.500 mean 0.5612 0.5993 0.6354 0.6576

s.d. 0.5436 0.4442 0.4163 0.4044
mc s.e. 0.0346 0.027 0.0252 0.0256

θ3 0.010 mean 0.0047 0.0128 0.0158 0.0162
s.d. 0.0254 0.0205 0.0181 0.0165

mc s.e. 0.0002 0.0001 0.0001 0.0001

Convergence experiments using artificial data. The network contains n = 50 players and the data are
generated by 1 million iterations of the simulation algorithm using the true parameters. The posterior is
estimated using different lengths R of the network simulation algorithm. The table reports the estimated
posterior mean, standard deviation and Monte Carlo standard error for the posterior mean.

Assuming each network is drawn from the stationary equilibrium of the model, each
network has distribution

π (gc, Xc, θ) =
exp [Q (gc, Xc, θ)]∑

ω∈Gc
exp [Q (ωc, Xc, θ)]

(20)
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Table 5: Convergence Experiments, n = 100
Starting value: (-20.0,15.0,-0.3)

true R=1000 R=3000 R=5000 R=10000 R=30000 R=50000 R=100000
θ1 -2.000 mean -2.0783 -2.0989 -2.0892 -2.0789 -2.0938 -2.0874 -2.1055

s.d. 0.2613 0.1375 0.1101 0.091 0.0632 0.0703 0.0823
mcse 0.0111 0.0015 0.0031 0.0025 0.0018 0.0016 0.0026

θ2 0.500 mean 0.341 0.5835 0.5627 0.5909 0.6475 0.6396 0.6201
s.d. 0.7119 0.3499 0.343 0.2751 0.2284 0.2612 0.3127

mcse 0.081 0.0176 0.0335 0.028 0.0253 0.0436 0.0364
θ3 0.010 mean 0.006 0.0096 0.0105 0.0111 0.0113 0.0124 0.0119

s.d. 0.0114 0.0065 0.0051 0.0042 0.0032 0.0031 0.0031
mcse 0.000020 0.000005 0.000005 0.000007 0.000003 0.000005 0.000005

Convergence experiments using artificial data. The network contains n = 100 players and the data are
generated by 1 million iterations of the simulation algorithm using the true parameters. The posterior is
estimated using different lengths R of the network simulation algorithm. The table reports the estimated
posterior mean, standard deviation and Monte Carlo standard error for the posterior mean.

Since each network is independent, the likelihood of the data (g,X) can be written as

π (g,X, θ) =
C∏
c=1

π (gc, Xc, θ) =
C∏
c=1

{
exp [Q (gc, Xc, θ)]

c (Gc, Xc, θ)

}

=
exp

[∑C
c=1Q (gc, Xc, θ)

]
∏C

c=1 c (Gc, Xc, θ)
=

exp
[∑C

c=1Q (gc, Xc, θ)
]

C (G, X, θ)

where G =
⋃C
c=1 Gc and X = {X1, ..., XC}. The likelihood for multiple independent networks

is of the same form as the likelihood for one network observation. The structure of this like-
lihood makes parallelization extremely easy: each network can be simulated independently
using the network simulation algorithm; at the end of the simulation we collect the last
network and compute the potential; then we compute the sum of potentials and use it to
compute the probability of update.
Therefore, the algorithm is modified as follows

ALGORITHM 2. (Parallel FAST EXCHANGE ALGORITHM)
Fix the number of simulations R. Store each network data (gc, Xc) in a different proces-
sor/core. At each iteration t, with current parameter θt = θ and network data g

1. Propose a new parameter θ′ from a distribution qθ(·|θ)

θ′ ∼ qθ(·|θ) (21)

2. For each processor c, start the network sampler at the observed network gc, iterating
for R steps using parameter θ′ and collect the last simulated network g′c

g′c ∼ P
(R)
θ′ (g′c|gc) (22)
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3. Update the parameter according to

θt+1 =

{
θ′ with prob. αpex (θ, θ′)
θ with prob. 1− αpex (θ, θ′)

where

αpex(θ, θ
′) = min

1,
exp

[∑C
c=1Q(g′c, Xc, θ)

]
exp

[∑C
c=1Q(gc, Xc, θ)

] p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp
[∑C

c=1Q(gc, Xc, θ
′)
]

exp
[∑C

c=1Q(g′c, Xc, θ′)
]
(23)

The speed of the algorithm depends on the largest network in the data. Since each pa-
rameter update requires the result of each processor simulation there is some idle time, since
small networks are simulated much faster. However, one could easily modify the algorithm
to have different number of network simulations for networks of different sizes, so for each c
we would have a different Rc

A.3 Freeman Segregation Index

The Freeman segregation index measures the degree of segregation in a population with
two groups (Freeman, 1972). Assume there are two groups, A and B. Let nAB be the total
number of links that individuals of group A form to individuals of group B. Let nBA, nBB
and nAA be analogously defined. The original index developed by Freeman (1972) is defined
as

FSI =
E [nAB] + E [nBA]− (nAB + nBA)

E [nAB] + E [nBA]
(24)

When the link formation does not depend on the identity of individuals, then the links
should be randomly distributed with respect to identity. Therefore, the index measures the
difference between the expected and actual number of links among individuals of different
groups, as a fraction of the expected links. An index of 0 means that the actual network
closely resembles one in which links are formed at random. Higher values indicate more
segregation. In this paper segregation is measured using the index27

SEG = max {0, FSI} (25)

The index varies between 0 and 1, where the maximum corresponds to a network in which
there are no cross-group links.

To complete the derivation of the index, the expected number of cross-group links is
computed as

E [nAB] =
(nAA + nAB) (nAB + nBB)

nAA + nAB + nBA + nBB

E [nBA] =
(nBA + nBB) (nAA + nBA)

nAA + nAB + nBA + nBB
27The index (24) varies between -1 and 1. However, the interpretation of the index when it assumes

negative values is not clear. Therefore Freeman (1972) suggests to use only when it is nonnegative, to
measure the presence of segregation
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